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Numerical simulation of the Enthalpy formulation, for the Stefan problems, is known to be 

limited by two difficulties: 1) non-physical waviness in the temperature distribution, as 

well as unwanted oscillations close to the phase interface, for isothermal phase change, and 

2) convergence and stability problems, as well as inaccuracies due to overwhelming 

dissipation of the numerical schemes, at the limit of small Stefan numbers. 

The method of space-time conservation element and solution element is known for its 

low dissipation and dispersion errors, as well as its distinguishingly high capability of 

capturing discontinuities accurately. Therefore, this numerical method, mainly applied to 

the fluid flow problems, represents an alternative for numerical modeling of moving 

boundary (Stefan) problems such as solid/liquid phase change.  
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In this dissertation, space-time CE/SE schemes are developed, for the solid/liquid 

phase change problems, in one-, two-, and three- spatial dimensions. A separate 

formulation is also presented and programmed for the axisymmetric problems. The von 

Neumann stability analysis is applied to the one-dimensional scheme. The results of this 

analysis lead to a necessary stability condition.        

Each scheme is then validated, numerically, using benchmark problems without and 

with phase change.  Both analytical and experimental results are used in the validation 

process. The results reveal that using the space-time CE/SE method, the first problem 

associated with the numerical modeling of the enthalpy method is eliminated. No non-

physical waviness or unwanted oscillation is detected in the results. The second problem, 

however, still existed. Although accurate results can be obtained for small Stefan numbers 

using the CE/SE method, a case-dependent adjustment in dissipation was needed. This 

presents the potential for a modification in the original schemes.  

Numerical experiments are then conducted, in order to reveal the dissipative / 

dispersive behavior of the numerical scheme and its variation with the Stefan number. The 

results of this analysis lead to the development of a CE/SE scheme that is, to a considerable 

degree, insensitive to the value of the Stefan number.        

Finally, space-time CE/SE method is established as an alternative for the numerical 

simulation of the enthalpy method for the Stefan problems.  
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Chapter 1  

INTRODUCTION 

1.1 Realm of Solid-Liquid Phase Change Processes 

The range of scientific and industrial applications of heat flow with solid-liquid phase 

change is so broad that, in many fields, one has little difficulty finding a phase change 

process involved.  The vastness of this realm can be explored through a brief discussion of 

the recent and ongoing phase change related research, ranging from astrophysics to micro-

cryopreservation of live cells for transplants. 

 

1.1.1 Application of Phase Change Process Modeling in Astrophysics 

Magma exists at high temperature and resides in a fluid- like state inside the Earth while its 

cooling process is still taking place. Modeling this cooling process has led to an estimation 

of the age of the planet to be not more than 1700 million years.  

The cooling process results in the shrinkage of the already solidified crust, generating 

compressive stresses that cause failure and lead to formation of mountains, volcanic 

activities and seismic events, [1].  
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A more comprehensive model could be used to achieve a more accurate estimate of our 

planet’s age. Moreover, it could predict relative movement of rocks, and could have the 

potential of predicting seismic events. 

 

1.1.2 Application of Phase Change Process Modeling in Magma 

Migration and Solidification 

Consideration of the motion of magma and its solidification is important to the 

understanding of ore body formation and mineralization in the crust of the earth. Owing to 

the complex nature of the geological problem, numerical methods have been widely 

adopted to find approximate solutions to many geological and mineralization problems. 

Nevertheless, numerical algorithm development for simulating magma migration and 

solidification is still at an elementary stage. The problem associated with the numerical 

modeling is that, in this area, the characteristic dimension of the whole geological system 

under consideration has a length scale of tens and sometimes hundreds of kilometers, while 

that of the intruded magma, such as sills and dikes has a length scale of meters and tens of 

meters. Therefore, new methodologies could be useful to either solve the problems that 

were previously unsolvable using conventional finite element methods, or solve the 

previously solvable problems more efficiently, [2]. 
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1.1.3 Application of Phase Change Process Modeling in the Study of 

Undercooled Melts 

A melt can be cooled significantly below its equilibrium melting point if the energy barrier 

for nucleation of the solid phase is high. However, solid impurities, convective flows, and 

the local energy fluctuations in the melt can lower this energy barrier. The highest 

achievable energy barrier for nucleation, which corresponds to homogeneous nucleation, 

can be achieved only in a containerless, quiescent, pure melt. 

Upon cooling, under such conditions, the melt can either solidify extremely rapidly from 

a very limited number of nucleation points giving rise to unique metastable 

microstructures, or the melt can pass through a glass transition and an amorphous solid 

phase is obtained.  Knowledge of such processes enables one to predict the formation of 

specific phases or glasses with very unique properties.  

Recent experience has demonstrated that with containerless processing in the space 

environment (i.e., using electromagnetic levitation), these conditions can be achieved and 

unique results can be obtained. However, attaining the proper experimental conditions 

required for such investigations is not possible on the ground for a wide range of materials, 

[3]. Therefore, a reliable numerical model could be used to partially replace expensive 

experiments in space.  
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1.1.4 Application of Phase Change Process Modeling in Studying 

Ablation of Entry Objects 

In studying the objects that enter the earth’s atmosphere, useful information can be 

obtained from trajectory models. It is common to hypothesize about the nature of an entry 

object, and then use a trajectory model to simulate its path, and then compare the results 

with what was observed.  

An accurate trajectory model must include an evaluation of both the mechanical 

fragmentation and the aerothermal ablation since both processes reduce the body’s initial 

kinetic energy. Unfortunately, accurate calculation of the rate of ablation mass loss is 

extremely difficult, since it requires knowledge of the temperature distribution in the shock 

layer, the chemical composition of the meteor, and the degree to which the ablation 

products block radiative heat transfer to the body.  Therefore, the trajectories predicted by 

using different ablation models, significantly differ for a given meteor. Inaccuracies in the 

calculated ablation rate can lead to substantial errors in the predicted terminal altitude of a 

given entry body, [4]. An accurate and efficient numerical phase change simulator could be 

part of a broader program for accurately modeling these trajectories.   

 

1.1.5 Application of Phase Change Process Modeling in Aircraft Icing 

In flight, icing on an aircraft surface occurs when the plane flies through a cloud of 

supercooled water droplets. A portion of the water droplets impinges on the aircraft 

components and results in ice formation. The growth of ice on an aircraft wing results in a 
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sharp increase in drag and a reduction in lift. Ice accretion can seriously degrade aircraft 

performance and handling characteristics. Icing has been implicated in a number of serious 

commercial aircraft accidents in recent years.  

From a thermodynamic standpoint, two types of ice accretion mechanisms have been 

identified, resulting in physically and geometrically different formations. Immediately upon 

impact, the droplets freeze either partially or completely. The released latent heat of fusion 

then, tends to warm the accreted ice and the underlying solid surface towards the fusion 

temperature. This warming tendency is counteracted by convective heat loss to the ambient 

air. The resulting energy balance between these two factors then, determines the impact 

region’s temperature. In cold temperatures with low liquid water content, temperature of 

the accreted ice remains below the fusion temperature and the impacting ice droplets freeze 

completely. This is known as rime icing. On the other hand, with high liquid water content 

and/or air temperatures only slightly below the fusion temperature, the accreted ice is at the 

fusion temperature and only a part of the liquid water freezes upon impact. The unfrozen 

water, then, tends to run back and freeze downstream of where it impinged on the surface.  

Consequently, complex “lobster tail” shapes tend to develop. This is called glazed icing.  

Rime icing is reasonably well understood and can be adequately simulated for most 

practical purposes while glaze icing is more complicated and much additional research is 

required before its computational simulations will be sufficiently accurate and reliable for 

most practical purposes, ([5], [5]). This is another area that a more accurate phase front 

capturing method could be of extreme value. 
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1.1.6 Application of Phase Change Process Modeling in Casting of 

Metals 

In recent years, numerical modeling of casting solidification has received increasing 

attention because of its enormous potential to improve productivity of the metal casting 

industry by reducing the cost and time associated with the traditional, experimentally 

based, design of castings. This becomes especially important in the case of permanent mold 

casting where mold prototyping can be extremely expensive. The numerical modeling of 

casting solidification has also found its way to the field of dentistry and is reported to be a 

reliable design tool for optimization and preventing defects in tooth crowns and bridges, 

([7], [8]).    

 Although computer simulations of solidification of casting offer a basis for predicting 

solidification patterns and casting defects, achieving accuracy is not easy to accomplish. 

Casting processes, are very difficult to model due to the complicated physics involved, 

which includes such phenomena as fluid mechanics with phase change, shrinkage and 

porosity, macrosegregation in alloys, heat transfer between the casting and the mold, and 

thermal stresses in the solidifying ingot. A further complicating factor is the fact that 

typical industrial parts have complicated geometries and thus three-dimensional modeling 

is necessary. Consequently, although qualitative agreement with experimental data is 

reported to be achieved in the literature, simulation times are reported to be large, [9]. Most 

of the numerical casting simulations in the literature are accomplished using finite element 

methods. An accurate and efficient alternative phase change scheme can be notably more 

efficient for this class of applications.     
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1.1.7 Application of Phase Change Process Modeling in Cryosurgery 

Cryosurgery, introduced in 1961, uses localized freezing/thawing cycles to destroy tissue. 

The procedure has found several areas of application including treatment of benign and 

cancerous prostate growth, liver cancer, breast cancer, skin cancer, Parkinson’s disease, 

kidney cancer, abnormal brain, cervical growth, and lung cancer. Cryosurgery is desirable 

because of its medical and economical advantages including low bleeding, good esthetic 

results, minimal use of anesthetics, short period of recovery, and low procedural costs, [10].  

Cryosurgery uses one or more cryosurgical probes, inserted into the patient’s body at the 

desired point of application. Cryoprobes are small, hollow cylindrical devices, 2-10 mm in 

diameter, through which a cryofluid, typically liquid nitrogen, flows at a controlled rate.  

The objective of procedure is to completely freeze and destroy the tumor or benign 

tissue while minimizing the amount of healthy tissue destruction, [11]. The degree of 

success in a cryosurgical procedure depends on a number of factors such as the lowest 

temperature achieved, the cooling rate during freezing, the thawing rate following the 

freezing process, probe placement, the number of repeated freezing/thawing cycles, and the 

cooling rate at the freezing front. As an example, it was observed that, the cryosurgical 

iceball shape and size is greatly affected by the cryoprobe placement and operation, [12]. 

Also a pioneering analytical and numerical study of cryosurgery related to lung cancer, by 

Bischof, Bastacky and Rubinsky in 1992, revealed that the freezing front accelerates as it 

leaves the tumor and enters the surrounding healthy, low-density tissue. Therefore, 

monitoring, controlling and optimizing the involved parameters are vital. This is where a 

numerical simulation of freeze/thaw cycles can play an important role. In fact there are 
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computer-controlled devices designed to control the freezing front’s temperature by 

controlling the cryoprobe’s temperature, [10]. Real-time data processing in the simulation 

of the heat transfer process is a very useful feature of these devices. Three-dimensional 

real-time simulations, however, require excessive amounts of computational power. The 

device, introduced in [10], allows one-dimensional simulations.  Upgrading to a faster 

processor is suggested in order to be able to perform two-dimensional simulations. 

Obviously, a more efficient phase change scheme can also provide advances in this area.  

 

1.1.8 Application of Phase Change Process Modeling in 

Cryopreservation of Cells and Organs for Transplantation 

As an illustration in this class of applications, transplantation of isolated pancreatic islets is 

evolving into an effective treatment of patients with insulin-dependent diabetes mellitus. To 

date, a number of islet transplant recipients who have experienced insulin independence 

have received cryopreserved islets from a low-temperature bank. Successful 

cryopreservation of islet cells demands that the addition and removal of cryoprotectants as 

well as cooling and warming are carried out within certain biophysical and cell 

physiological tolerance limits. These limits have not yet been fully defined. Cells shrink 

transiently upon the addition of cryoprotective agents and then re-swell as the 

cryoprotectant permeates. Cells undergo a second shrinkage when cooled at rates low 

enough to preclude intracellular freezing as growing extracellular ice concentrates the 

solutes in the diminishing volume of non-frozen water, causing exosmosis. The cells return 

once again to their normal volume during warming and thawing. Finally, cells undergo a 
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potentially damaging osmotic volume excursion during the removal of the cryoprotectant. 

Therefore, accurate and efficient treatment of the freezing/thawing in the extracellular 

solute plays an important role in the calculation of lethal volume changes in cells. 

Furthermore, simulations can help provide knowledge to prevent intracellular freezing 

during cooling, [13]. 

The applications described above do not completely cover the realm of phase change 

processes. Other applications can be mentioned including formation of ice on the oceans; 

simulation of growth and decay of permafrost regions [14]; drilling and mining in 

permafrost regions where the rocks are held together by permafrost [15]; welding of metals 

and its control in order to reduce defects such as solidification cracking ([16], [17]); 

separating highly soluble salts from their aqueous solution through freezing in wastewater 

purification ([18], [19]); latent heat thermal storage systems and their usage where heat 

supply and heat demand are out of phase ([20]-[22]) as well as in maintaining a system’s 

temperature in its operating range [23]; melting of fuses in electrical applications; cooling 

of electronic equipments using latent heat of fusion; deep freezing of food in food 

processing industry and its control in order to maintain the original characteristic of the 

fresh food. 

In fact it is interesting to note that solid- liquid phase change problems belong to an even 

broader class of problems with numerous other applications. The feature that distinguishes 

this broader class is the subject of the next section. 
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1.2 Moving (Free) Boundary Problems 

Many problems in various areas of applied science can be modeled using ordinary or 

partial differential equations posed in domains whose boundaries are to be determined as 

part of the problem. Depending on whether these boundaries are stationary or moving, such 

problems are usually referred to as free or moving boundary problems, respectively. 

Free or moving boundary problems are, in general, harder to solve, either analytically or 

numerically, than the underlying differential equations would be in a prescribed domain. In 

particular, two separate solutions of such problems cannot be superposed, and this inherent 

non-linearity means that there is a dearth of analytical solutions, [24]. Moving boundaries 

can suddenly vanish, or appear, or move with infinite speed, or become blurred, all causing 

complications in the problem.  

Problems of this kind arise in many fields such as fluid mechanics (shock waves, 

inviscid flow, slow (Hele-Shaw) flow, flow of liquids and gases in porous media), 

molecular diffusion, solid mechanics (frictional and contact problems), lubrication, and 

heat conduction with melting/freezing. 

The scientists who developed the subject to its present shape, and where to find the 

details of their work, are reviewed briefly in the next sections.  

 

1.2.1 Historical Background of Moving Boundary Problems 

Moving boundary problems are often called Stefan problems, with reference to the early 

work of Jožef Stefan (1835-1893) on solid- liquid phase change published in six treaties 
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between the years 1889 and 1891. The solid- liquid phase change story, however, had begun 

a century earlier by the Scottish medical doctor, physician and chemist Joseph Black 

(1728-1799) in a series of experiments performed with water and ice at the University of 

Glasgow between the years 1758 and 1762. He demonstrated that solid- liquid phase change 

processes could not be calorically understood within the framework of sensible heat alone. 

As a consequence he introduced the term and the concept of latent heat.   

French mathematician and physicist Jean Baptiste Joseph Fourier (1768-1830) provided 

the necessary physics and mathematics for heat conduction in his “La Théorie Analytique 

de la Chaleur”, published in 1822. The idea of how to analytically incorporate latent heat in 

heat conduction equations was first explained in a pioneering paper by the physicist Gabriel 

Lamé (1795-1850) and the mechanical engineer Emile Clapeyron (1799-1864) in 1831. 

This work presents an extension of the earlier work by Fourier, which tried to produce a 

rough estimate of the time elapsed since the earth began to cool from the initially molten 

state without considering solidification. Franz Neumann (1798-1895) also solved a similar 

problem in the early 1860s [25].  

 

Classical Formulation  

Jožef Stefan, in addition to Lamé, Clapeyron, and Neumann, contributed importantly to 

establishing the roots of the subject [25]. In 1889, Stefan in his work on the freezing of the 

ground posed and solved the following two problems. 

1) A material that changes phase at a single fusion temperature Tf, and transmitting 

heat only by conduction, fills the half-space x > 0. At the initial time it is at the 
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constant temperature Ti = Tf. At the surface x = 0 it is maintained at constant 

temperature Tw < Tf, under the effect of which freezing arises isothermally, without 

supercooling. Volume change effects are neglected. When Ti = Tf, this problem is 

called the one-phase Stefan problem because only one phase is active and the other 

phase, where present, remains at the fusion temperature.  

Clearly few realistic phase-change processes will actually lead to a single-phase situation, 

with ablation (instantaneous removal of melt) and induced stirring of liquid while freezing, 

being notable exceptions. On the other hand, molecular diffusion, filtration, and other 

processes commonly lead to single-phase problems [26], [24]. When Ti > Tf, however, both 

phases are active and the problem is called the two-phase Stefan problem : 

2) The heat conducting material described above occupies the space – 8 < x < 8. At 

the initial time the liquid phase fills the domain 0 < x < 8 at temperature TL > Tf, 

while the solid occupies the domain – 8 < x < 0 at temperature TS < Tf. The 

remaining conditions are the same as in the first problem.  

Classically formulated, the two-phase Stefan problem can be described mathematically 

by the heat conduction equation in each phase plus the Stefan condition, (which can be 

derived from a global energy balance [27]) at the interface.  Consider, for example, a semi-

infinite slab 0 = x < 8, initially solid at a uniform temperature TS = Tf. By imposing a 

constant temperature TL > Tf on the face x = 0, melting starts from the left. The 

mathematical formulation can be written as 

In melt region: 
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In solid region: 
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Interface temperature: 
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Initial conditions: 

0)0(,0,)0,( =><= XxTTxT fS                                    (1.5) 

Boundary conditions: 

0,),(lim,),0( >=>=
∞→

tTtxTTTtT SxfL                               (1.6) 

where T denotes temperature, t is time, x is the spatial coordinate, and Lf, ρ , X, k, and α  

are latent heat of fusion, density, interface location, conductivity, and diffusivity, 

respectively. Subscripts, L and S, refer to the liquid and the solid, respectively.  

That reasonably general one-dimensional Stefan Problems are well-posed, i.e., they 

have a unique classical solution depending continuously on the data, was established only 

during the mid 1970's! [28]. Local solvability (meaning: there exists a time t* up to which a 



 

 

14 

unique classical solution exists) was proved by Rubinstein in 1947 (see [26] for a historical 

survey of the mathematical development up to the mid 1960's).  

The classical formulation of Stefan problems as models of basic phase-change processes 

was presented in the above. Under certain restrictions on the parameters and data such 

problems admit explicit solutions in closed form. These simplest possible, explicitly 

solvable, Stefan problems form the backbone of our understanding of all phase-change 

models and serve as the primary means of validating approximate and numerical solutions 

of more complicated problems. Unfortunately, closed-form explicit solutions (all of which 

are of similarity type) may be found only under the following very restrictive conditions: 

semi- infinite (and usually one-dimensional) geometry, uniform initial temperature, constant 

imposed temperature (at the boundary), and constant thermophysical properties in each 

phase, [27]. 

Stefan-type problems can also be formulated classically in two or three dimensions [27] 

but such formulations may admit no (classical) solution. Even one-dimensional problems 

with either internal sources or a variable fusion temperature may develop mushy regions 

rendering the above sharp-front classical formulation inappropriate. Fortunately weak or 

generalized (enthalpy) formulations, which are well-posed (and computable), came to the 

rescue in the early 1960's. Furthermore, since explicit and approximate solutions are 

obtainable only for simple problems and only in one space dimension while most realistic 

phase-change processes do not neatly fall in this category, the modeling of such processes 

may only be attacked numerically, [27].  
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Before closing this discussion of the classical formulation and beginning the next 

chapter of the phase-change story, i.e., numerical methods and enthalpy formulation, it is 

worthwhile to mention excellent references that cover documented details of phase change 

background: Surveys of the early literature with numerous references dating from the time 

of Stefan have been written by Bankoff [29] and Muehlbauer and Sunderland [30]. 

Rubinstein's classic book [26] gives a systematic presentation of the mathematical 

developments in Stefan problems up to that time. A later survey is given by Fox (1979) 

[31], with useful bibliographies. Reports on several conferences ([32]-[36]) contain 

accounts of mathematical developments and of wide-ranging applications to problems in 

physical and biological sciences, engineering, metallurgy, soil mechanics, decision and 

control theory, etc. which are of practical importance in industries [33]. More recent 

surveys can be found in [27] and [37].   

 

Numerical Methods   

Numerical methods for the phase change problems are designed to be suitable for one of 

three main approaches, namely front fixing, front tracking, and front capturing methods. 

This section, offers a brief discussion on front fixing and front tracking methods, usually 

used for numerical modeling of phase change problems, based on the classical formulation. 

 

Front Fixing Methods 

This approach is based on the Landau transformation. By a change of variables  

)(/ tXx=ξ                                                        (1.7) 
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where X(t) is the interface location, the interval 0 = x = X(t), is mapped onto the fixed 

interval 0 = x = 1. Using this mapping, the geometric non- linearity of the problem is 

eliminated. The governing equations, on the other hand, become explicitly and 

algebraically non-linear, [27].  Then one solves the resulting system of nonlinear equations 

by some numerical method.  

The above transformation was proposed by H. G. Landau in 1950 and first implemented 

using a finite-difference scheme by J. Crank in 1957. The one-dimensional transformation 

introduced above is a simple case of more general transformations that map curved shape 

regions, in two or three dimensions, onto fixed rectangular domains and are commonly 

called body-fitted curvilinear transformations. A particular case of the curvilinear 

transformations is the isotherm migrations method (IMM), in which the dependent variable 

T, i.e., the temperature, is replaced with one of the space variables, e.g., x. In other words, 

IMM, instead of expressing the time-dependence of temperature at a specific x, expresses 

how a specified isotherm moves in the field. The IMM is particularly suited to melting and 

freezing because phase front itself is an isotherm, provided the phase change takes place at 

a constant temperature [33]. More details as well as the historical background are available 

in [33]. 

 

Front Tracking Methods 

Due to the underlying geometric nonlinearity of the problem, several approaches have been 

devised with the aim of separating the problem into time-varying regions in which heat 

conduction equation is to hold, and to compute the location of the interface x = X(t) 
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concurrently. These methods are referred to as front tracking schemes, because they 

attempt to explicitly track the interface using the Stefan condition, [27]. 

These methods compute, at each step in time, the location of the moving boundary. 

Using standard numerical methods, generally, the moving boundary will be located 

somewhere between the grid nodes and not necessarily exactly on them. Consequently 

special formulae are needed for calculation of derivatives. One approach is to fix the spatial 

step, but allow the time step, to float in such a way that the front always passes through a 

grid node. An example of this approach is the method of Douglas and Gallie [38]. Another 

approach is to fix the time step and allow the spatial step to float, in fact, use two distinct 

and time-varying space steps for the two phases. In these methods, e.g., the method of 

Murray and Landis the number of space intervals is kept constant between a fixed and a 

moving boundary. This way the moving boundary is on a grid node at all times [33].  For 

more details and other methods of this category, as well as the historical background, see 

[33]. Surveys of front tracking methods also appear in [39] and  [35]. 

 

Difficulties Associated with the Front Fixing and Front Tracking Methods 

All of these methods are effective for simple Stefan Problems set in the geometries where a 

sharp front is expected to appear. In more realistic problems, it may sometimes be difficult 

or even impossible to track the moving boundary directly if it does not move smoothly or 

monotonically with time [33]. Presence of a time-dependent heat source (or sink) may 

cause multiple fronts and disappearing phases; mushy zones may appear, etc. In other 
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words, a real life phase change problem can easily become complicated enough to make a 

classical, sharp front formulation impractical.  

Moreover, front tracking methods often require complicated starting solutions [40]. 

Considering the difficulties that could occur for a slightly complicated one-dimensional 

phase change problem, one can easily imagine how difficult treatment of such multi-

dimensional problems in this manner would be. The moving boundary may have sharp 

peaks, or double back, or it may even disappear. The possibility, therefore, of reformulating 

the problem in a new form of the equations, which applies over the whole of a fixed 

domain, is an attractive one [33]. Fortunately a more general and versatile class of methods 

is available for formulation of phase change processes: the enthalpy formulation.  

     

Enthalpy Formulation 

This method of formulation eliminates the difficulties associated with the above approaches 

because it bypasses the explicit tracking of the interface. The Stefan condition is not 

enforced, but obeyed automatically. The enthalpy method is based on the method of weak 

solutions. Weak solutions nucleated in late 1800’s when David Hilbert first introduced the 

idea of generalized solutions for the partial differential equations (PDE’s). Traditionally, a 

solution to a PDE was regarded as a continuous function with continuous derivatives that 

satisfied that PDE in its domain of application. In the late 1800’s, however, the need arose 

to weaken these conditions and to define continuity at every point, in a more general way, 

by integrability over a set. The initiated ideas further evolved in the 1930’s and 1940’s, 

mainly in the context of the calculus of variations and also in problems described in terms 
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of hyperbolic PDE, e.g., shock waves. The Stefan problems, however, were introduced to 

the subject much later due to their highly non-linear and non-standard PDE types. The use 

of enthalpy was proposed by Eyres et al. (1946) and later by Price and Slack (1954) [33]. It 

was Kamin (1958) and Oleinik [41] who first introduced a weak formulation of the Stefan 

problem, while enthalpy-based numerical methods were first proposed in [42]-[44]. For 

more details on the history and mathematics of the subject see [27]. 

The enthalpy formulation in its simplest form can be presented as follows. Consider the 

governing equation in a three-dimensional Cartesian coordinate system, i.e., the 

conservation of energy, with the assumption of constant thermophysical properties within 

each phase (the Fourier-Biot equation)  

 

q
z
T

k
zy

T
k

yx
T

k
xt

T
c &+








∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

=
∂
∂

ρ                          (1.8) 

 

where c, k, and ρ  are specific heat, thermal conductivity and density of the material, 

respectively, and q&  refers to a distributed heat source (or sink) that may be present in the 

domain. The left hand side of the above equation is related to the change of enthalpy. The 

specific enthalpy may be defined as 

f

T
LdTch φ+= ∫0

                                                 (1.9) 

where Lf is the latent heat of fusion and φ  equals 1 for liquids and 0 for solids. Using the 

above definition, the governing equation can be written as  
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where hH ρ=  is the enthalpy per unit volume. To use the above equation when both 

solid and liquid phases are involved, procedures are needed for both choosing the thermal 

conductivity and calculating the temperature field from the enthalpy field. Since c is 

assumed to be constant within each phase, the enthalpy of the liquid and solid, for a 

material that changes phase at a single temperature fT , can be calculated from Eq. (1.9) as 
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where subscripts L and S refer to liquid and solid phases, respectively. Therefore, the 

temperature field can be calculated using the above equation as follows 
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where ( )ffSLLf LTcH += ρ  and fSSSf TcH ρ=  are enthalpies of the fusion liquid and 

fusion solid, respectively. These values can also be used in the numerical approach for 

determining whether each grid element is solid, liquid or undergoing melting/freezing. 

Corresponding thermal conductivities are then chosen for that grid element.     
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Problems associated with the numerical modeling of the enthalpy method 

Numerical application of these methods produces better results when the phase change 

occurs within a temperature range. For situations where the phase change occurs at a single 

temperature, the phase front is a moving discontinuity. Consequently all of these methods 

need special (and most of the time case-dependent) adjustments in order to achieve 

convergence, to maintain stability of the numerical solution [45], and to avoid oscillations 

in the location of the interface. Usually, for suppressing these oscillations, schemes need to 

be modified by incorporating a certain amount of artificial dissipation into the numerical 

method. This, however, has a dilatory effect on the solution in the smooth regions and the 

overall accuracy is consequently reduced. The ideal scheme would automatically add the 

artificial dissipation, only in the vicinity of the discontinuities, (which are located in a 

previously unknown region), and not affect the smooth regions. Has such a method ever 

been designed? The simple answer is yes. In another, not far remote discipline, not very 

long ago, a modern concept initiated what, we suggest, has the potential to be used for 

designing a very effective and generally applicable phase change scheme. This scheme will 

be introduced in the next chapter.  

Another well-known weakness mentioned for numerical simulations of the enthalpy 

method is a convergence and accuracy problem at small Stefan numbers (the Stefan 

number is defined as the ratio of sensible to latent heat), [46]. Thus, for a new alternative 

general phase change solver, it is also necessary to consider its behavior at the limit of 

small Stefan numbers.  
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1.3 The Space-Time Conservation Element and Solution 

Element Method - An Innovative Numerical Scheme for Fluid 

Mechanics Problems 

In 1991, at the NASA Glenn Research Center, Dr. Sin-Chung Chang introduced a new 

method for solving the conservation laws in fluid mechanics [47]-[49]. Compared to other 

numerical methods known to-date, the so-called space-time conservation element and 

solution element (CE/SE) method possesses a distinguishing1 feature: it treats the domain 

of application of the PDE’s in a way that is most consistent with the physical nature of the 

universe we live in. In other words, the CE/SE method sees the universe as a space-time 

continuum and naturally treats the space and time directions similarly. As a very brief 

definition, this method could be thought of as a means of solving the integral form of the 

conservation laws over a space-time domain.  

Between 1991 and today (2004), the CE/SE method has been applied to a range of 

PDE’s, mainly in the area of fluid mechanics. An overview of these applications, through 

which the interesting and unique features of the method were observed and studied, are the 

subject of the next sections. 

 

                                                 
1 Certain finite element methods, e.g., Discontinuous Galerkin (DG) methods, share some of the features mentioned for the 

CE/SE scheme. For detailed comparison of the CE/SE scheme to the traditional schemes see [79]]. 
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1.3.1 The CE/SE Method’s History 

A brief review of the advances of the space-time CE/SE method, since its inception, helps 

to provide an overall picture of the method’s capabilities. The fact that the CE/SE method 

is being successfully applied to disciplines other than that where it originated from, 

presents a strong confirmation of the method’s robustness and generality. The following 

contains some of these applications that have appeared to date.  

In 1993, the CE/SE method was applied to Euler and Navier-Stokes equations in one 

spatial dimension [50]. The shock tube problem was then studied using this method [51]. 

At the same time the scheme was extended to two-dimensional time-marching problems 

[52].  

In 1995, the method was extended in order to solve two-dimensional advection-

diffusion problems [53]. An implicit solver was also built based on the concept [54]. The 

CE/SE method’s application in axisymmetric Euler time-marching problems appeared [55], 

and research started to apply it to aeroacoustics problems [56].   

In 1996, flows caused by shock-body interactions were studied using the CE/SE method 

[57]. Its application in unsteady flows with chemical reactions started in 1997. Among the 

new applications that appeared in 1998 are: shock reflection over a dust layer [58], free 

shear flows, and ZND detonations [59]. Further, a CE/SE scheme, suitable for two-

dimensional unstructured triangular grids, was proposed [60], and a dam-break and a 

hydraulic jump were simulated using the method [61]. The study of unstable detonations 

using the CE/SE method continued in 1999 [62], along with further applications in the 

simulation of vortex dynamics in aeroacoustics [63]. It was in this year that three-
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dimensional structured and unstructured CE/SE Euler solvers were developed ([64], [65]). 

Moreover, the method was extended to two-dimensional viscous flows [66] and also used 

as a new alternative for the NCC (National Combustion Code) solver ([67]-[69]).  

Propagation of sound waves through a nozzle with/without a shock wave was resolved 

using the CE/SE method in 2000 [70]. Further applications in this year also include 

aeroacoustic computations of supersonic jets ([71], [72]), along with successful attempts 

for parallel computation [73] and local mesh refinement [74]. In addition to more recent 

applications in inviscid and axisymmetric flows, ([75], [76]), the CE/SE method has been 

applied to the solution of Maxwell’s equations for electrical engineering problems [77]. 

A mathematical discussion on the convergence and error bound analysis of the CE/SE 

method applied to a one-dimensional time-dependent convection-diffusion equation is 

available in [78]. 

The studies and applications of the CE/SE method, during these years, proved and 

reproved a number of distinguishing features that are summarized in the next section.         

 

1.3.2 The CE/SE Method’s Features 

The applications mentioned above, in addition to establishing the effectiveness, robustness 

and accuracy of the CE/SE method, revealed that it possesses low dissipation and low 

dispersion errors in spite of its second order accuracy.  

Furthermore, the method was shown to be capable of capturing discontinuities without 

resorting to special treatments [68], without oscillations and without affecting the smooth 

solution within the region. This was best demonstrated in the method’s capability of 
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resolving weak disturbances along with strong discontinuities. This is in fact due to a 

dissipation term that can be introduced in the scheme for automatically suppressing the 

unwanted oscillations close to the discontinuities while being automatically negligible in 

the smooth regions.  

Among other favorable features of the CE/SE method, is the fact that its underlying 

concept is easy to implement and easy to extend to higher dimensions. Furthermore, 

computationally efficient explicit methods can be designed based on it, a feature vital to the 

treatment of three-dimensional problems. Finally, the method is adaptable to unstructured 

grids, a feature that simplifies treatment of complex geometries.  It is also worthwhile to 

briefly compare the CE/SE method to the well-known traditional computational methods. 

 

In comparison with traditional computational methods.  

The CE/SE method’s both underlying concept and methodology of application are different 

from finite difference, finite element, finite volume, and spectral computational methods.  

In particular, finite difference, and spectral methods deal with the differential 

conservation laws. This feature, as mentioned in the comparison between classical and 

weak formulations, introduces fundamental disadvantages when treating discontinuities. 

The CE/SE method treats the integral equations.  

Furthermore, traditional methods either do not enforce flux conservation or enforce it in 

space only. Finite volume methods treat the integral form of conservation laws and can be 

designed to enforce flux conservation in both space and time. This process, however, 

involves the ad hoc choice of a special flux evaluation model among many available 
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models. In the CE/SE method, on the other hand, flux conservation is enforced both locally 

and globally over space and time. This flux conservation enforcement is an integral part of 

the process and no interpolation/extrapolation is needed. The CE/SE, in contrast to 

traditional methods, is discussed in detail in [79]. 

 

1.4 Outline of dissertation 

The remaining chapters are organized as follows: Chapter 2 is devoted to problem 

statement and its physical modeling. It contains a brief introduction to the physical 

phenomena involved in phase change, underlying assumptions used in modeling and their 

evaluation, and finally the enthalpy formulation for both isothermal phase change and 

phase change over a temperature range. 

Chapter 3 provides the development of a one-dimensional CE/SE phase change solver. 

It contains analytical studies on the equivalence of the CE/SE formulation with the classical 

formulation, as well as the stability of the method. It also contains numerical studies on the 

convergence and accuracy of the method.  

Chapter 4 presents the development of a two-dimensional CE/SE phase change solver. It 

contains a detailed derivation of the method on unstructured grids, as well as detailed 

numerical studies on the convergence and accuracy of the method. 

Chapter 5 presents an axisymmetric version of the solver, since many phase change 

problems can be modeled as axisymmetric. This chapter explores axisymmetric 

formulation options and spots the option leading to a stable efficient solver. In addition to 
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the derivation, numerical confirmations are also presented on the convergence and 

accuracy of the axisymmetric scheme. 

Chapter 6 presents the development of a three-dimensional CE/SE phase change solver. 

It contains a detailed derivation of the four-dimensional space-time scheme needed for 

solving phase change problems in three spatial dimensions. As presented in the previous 

chapter, the convergence and accuracy of the three-dimensional scheme is also assessed 

numerically, by comparing the results to the available analytical and semi-analytical 

solutions for specific benchmark problems. 

Chapter 7 addresses the second difficulty associated with the numerical modeling of the 

enthalpy method, i.e. the limit of small Stefan numbers. As demonstrated in Chapter 4, the 

numerical simulation of the Stefan problem using the CE/SE method is capable of 

providing accurate results for both large and small Stefan numbers. However, for small 

Stefan numbers, the accuracy had  to be improved by using an alternate method for 

calculation of the first-order derivative terms. The original CE/SE phase change scheme, 

like other numerical schemes for the enthalpy method, loses its second-order accuracy and 

becomes dissipative for small Stefan numbers. The dissipation, nevertheless, is adjustable. 

The adjustment, that was employed in order to obtain accurate results for small Stefan 

numbers, is an ad hoc feature and therefore undesirable. Recently, space-time CE/SE 

methods have been designed to solve fluid flow problems without being sensitive to the 

size of the Courant number ([80], [81]). Using an analogous concept, it is possible to design 

a CE/SE scheme that is, to a considerable degree insensitive to the size of the Stefan 

number. In this chapter, the one-dimensional analytical studies of Chapter 3 are summoned 
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again, and the dissipation of the original method is studied through numerical experiments. 

The new insensitive CE/SE scheme is then described for numerical simulation of phase 

change problems. A single-phase Stefan problem is selected as a benchmark problem for 

comparing the behavior of the original and the new scheme. Finally, the convergence and 

accuracy of the new scheme is assessed without any case-dependent adjustment.    

Chapter 8 is in reality only a starting point for future work towards construction of a 

general phase change solver based on the previous developments. In this chapter, the 

consideration of density driven body force problems is made. A full CE/SE Navier-Stokes 

solver is derived. The program is validated for some standard benchmark fluid flow 

problems, and is proved to be accurate and ready to be extended to study phase change 

phenomenon.  

 

The intention of this work is to lay the foundation for the design of a new generation of 

more accurate, more efficient, and more generally applicable numerical schemes for 

moving boundary problems and, in particular, to phase change problems. 
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Chapter 2  

PROBLEM STATEMENT AND FORMULATION 

 

A model can at best be as good as its underlying assumptions [27]. Therefore, the problem 

formulation needs to start by first providing a clear picture of which phenomena are to be 

taken into account and which are not, and errors introduced because of the model 

simplifications. Thus, in this chapter, an overview of the phenomena involved in a solid-

liquid phase change process is briefly presented and the relevant terminology introduced. 

Then a summary of contributions of the mentioned phenomena to the model is given. The 

problem is then modeled using the Enthalpy Formulation.  

 

2.1 Physical Phenomena Involved in Solid-Liquid Phase 

Change processes 

Both solid and liquid phases are characterized by the  presence of cohesive forces that keep 

atoms in close proximity. In a solid the molecules vibrate around fixed equilibrium 

positions, while in a liquid they are freer to move between these positions. The 
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macroscopic manifestation of this vibrational energy is what we call heat or thermal 

energy. Clearly atoms in the liquid phase are more energetic than those in the solid phase, 

all other things being equal. Thus before a solid can melt it must acquire a certain amount 

of energy to overcome the binding forces that maintain its solid structure. This energy is 

referred to as the latent heat of fusion of the material and represents the difference in 

enthalpy levels between liquid and solid states, all other things being equal. Of course, 

solidification of liquid requires the removal of this latent heat and the structuring of atoms 

into more stable lattice positions [27].  

The phase-transition region where solid and liquid coexist is called the interface. Its 

thickness may vary from a few Angstroms to a few centimeters, and its microstructure may 

be very complex, depending on several factors (the material itself, the rate of cooling, the 

temperature gradient in the liquid, surface tension, etc.). For most pure materials solidifying 

under ordinary freezing conditions at a fixed Tf, the interface appears (locally) planar and of 

negligible thickness. Thus, it may be thought of as a sharp front, a surface separating solid 

from liquid at temperature Tf. In other cases, typically resulting from supercooling, or 

presence of multiple components (e.g. in binary alloys), the phase transition region may 

have apparent thickness and is referred to as a "mushy zone"; its microstructure may now 

appear to be dendritic or columnar (shown schematically in Figure 2.1).  

Several mechanisms are at work when a solid melts or a liquid solidifies. Such a change 

of phase involves heat (and often also mass) transfer, possible supercooling, absorption or 

release of latent heat, changes in thermophysical properties, surface effects, etc [27]. A 

qualitative discussion of these follows. 
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2.1.1. Heat and Mass Transfer 

There are three possible modes of heat transfer in a material: conduction, convection and 

radiation. Conduction is the transfer of kinetic energy between atoms by any of a number 

of ways, including collision of neighboring atoms and the movement of electrons; there is 

no flow or mass transfer of the material. This is how heat is transferred in an opaque solid. 

In a liquid heat can also be transferred by a flow of particles, i.e. by convection. Radiation 

is the only mode of energy transfer that can occur in a vacuum (it requires no participating 

medium) [27]. 

 

2.1.2. Variation of Phase Change Temperature 

The transition from one phase to the other, that is, the absorption or release of 

the latent heat, occurs at some temperature at which the stability of one phase breaks down 

in favor of the other according to the available energy. This phase change, or melt 

temperature Tf, depends on pressure. For a fixed pressure, Tf  may be a particular fixed 

value characteristic of the material (for example, Co0  for pure water freezing under 

atmospheric pressure), or a function of other thermodynamic variables (for example, of 

glycol concentration in an anti- freeze mixture) [27].  
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2.1.3. Supercooling 

Most solids are crystalline, meaning that their particles (atoms, molecules, or ions) are 

arranged in a repetitive lattice structure extending over significant distances in atomic 

terms. In this context atoms may be regarded as spheres of diameter 2 to 6 Angstroms (1 

Angstrom = 10-10 meters). Since formation of a crystal may require the movement of atoms 

into the solid lattice structure, it may well happen that the temperature of the material is 

reduced below Tf  without the formation of a solid. Thus, supercooled liquid, i.e., a liquid at 

temperatures  

 
 
(a) Planar              (b) Columnar             (c) Dendritic               (d) Amorphous  
 

     Figure 2.1: Different microstructures of the solid-liquid phase interface 

below Tf may appear; such a state is thermodynamically metastable [82], [83]. We note that 

melting requires no such structuring, possibly explaining why superheating is rarely 

observed. When crystallization does take place, if the latent heat released upon freezing is 

sufficient to raise the temperature to Tf, i..e., the liquid was not cooled too much, the 

temperature rapidly rises back to the melt temperature Tf. Liquid cooled to a temperature so 

low that the latent heat is not sufficient to raise its temperature to Tf  is referred to as being 

hypercooled [27]. 

S S S S L L L L 
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2.1.4. Variation of Thermophysical Properties 

Most thermophysical properties of a material (usually varying smoothly with temperature) 

undergo more or less sudden changes at Tf. For example the heat capacity of aluminum 

changes by 11 % at its melt temperature (of 659°C), but that of silicon changes by only 

0.3% (at 1083°C). Such discontinuities in thermophysical properties complicate 

mathematical problems because they induce discontinuities in the coefficients of 

differential equations. However the most fundamental and pronounced effects are due to 

changes in density [27]. 

 

2.1.5. Density Changes  

Typical density changes upon freezing or melting are in the range of 5% to 10% but can be 

as high as 30%. For most materials the solid is denser than the liquid, resulting in possible 

formation of voids in freezing or breaking of the container in melting. On the other hand 

water expands on freezing, resulting in broken pipes on cold days and ice floating instead 

of filling the bottom of the oceans. The density variation with temperature induces flow by 

natural convection in the presence of gravity, rapidly equalizing the temperature in the 

liquid and greatly affecting heat transfer. In microgravity there is no natural convection but 

Marangoni convection [84], due to surface tension (capillary) effects, may arise instead and 

dominate heat transfer. All these effects may complicate a phase-change process beyond 

our ability to effectively analyze them [27]. 
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2.2 Underlying Assumptions 

The phase change process considered here involves a PCM (phase change material) with 

constant latent heat of fusion Lf. Supercooling effects and nucleation difficulties are 

assumed not to be present.  

The specific heats cL, cs, and thermal conductivities, kL,  ks are assumed phase-wise 

constant, allowing their discontinuity at the phase interface. This assumption is made only 

for convenience. In fact the structure of the numerical scheme, easily allows for their 

variation with temperature and/or spatial coordinates.  

Heat is assumed to be transferred only by conduction. This is a reasonable assumption 

for pure materials in small containers and moderate temperature gradients. It is also 

worthwhile to mention that this assumption can be relaxed by adding the mass transfer 

equations and considering convection. The radiation heat transfer can also be added to the 

model for analyzing more complicated situations.  

For most of the cases modeled here, the fusion temperature is assumed constant. 

Furthermore, most of the cases involve an isothermal phase change. The reason is that for 

such cases the interface represents a moving discontinuity, for which the performance of 

the numerical method needs to be studied.  However, for generality, one case will be 

studied later, in which the change of phase occurs over a temperature range, rather than a 

single fusion temperature.   

Density change due to phase transition is ignored. This is necessary in order to prevent 

the movement of the fluid part. As discussed above, this assumption, although reasonable 
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for many cases, may not be a good one for all cases. However, it helps to construct a less 

complicated phase-change solver in order to study the behavior of the numerical scheme. 

Once the scheme is well established, this assumption may be relaxed. This can be done 

either by adding the entire fluid flow equations to the model, or by solving the mass 

conservation equation on the interface, combined with modeling volume change effects. 

 

2.3 Enthalpy Method 

The enthalpy method is used for modeling heat conduction with phase change 

phenomenon. This method gives the solid-liquid interface as a part of the solution without 

explicit tracking.  

It is interesting, from a historical perspective, to note that originally, this formulation 

was not introduced for treating phase change problems. It was first devised, by Eyres et al., 

as an alternative formulation for the heat conduction problems where the thermal 

conductivity varies with temperature. In fact it was used in conjunction with a method that 

was afterwards became known as the Kirchoff transformation.   

The governing equation, i.e., the conservation of energy, with the assumption of 

constant thermophysical properties within each phase is the Fourier-Biot equation that for a 

system with no energy generation is written in vector form as 

 

( )Tk
t
T

c ∇∇=
∂
∂

ρ                                                   (2. 1) 
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where T is the absolute temperature, t denotes time, and c, k, and ρ  are specific heat, 

thermal conductivity and density of the material, respectively. The left hand side of the 

above equation is related to the change of enthalpy. The procedure of the enthalpy method 

starts by introducing an enthalpy function H(T), which is the total heat content, i.e. the sum 

of the sensible heat and the latent heat of phase change. The specific enthalpy may be 

defined as 

 

     f

T
LdTch φ+= ∫0

                                                 (2. 2) 

 

where fL  is the latent heat of fusion and φ , is the so-called liquid fraction, which equals 1 

for liquids and 0 for solids. Using the above definition, Eq. (2.1) can be written as  

 

   ( )Tk
t

H
∇∇=

∂
∂                                                     (2. 3) 

 

where hH ρ=  is the enthalpy per unit volume. To use the above equation when both 

solid and liquid phases are involved, procedures are needed for both choosing the thermal 

conductivity and calculating the temperature field from the enthalpy field. The specific heat 

c is assumed to be constant within each phase. As mentioned in [85], the enthalpy can be 

calculated from Eq. (2.2) as 
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where subscripts L and S refer to liquid and solid phases, respectively. For an isothermal 

phase change, ffS TT ≡  is the fusion temperature of the material. For a non- isothermal 

phase change, the fusion occurs over the temperature range fLfS TTT ≤≤ , and the liquid 

fraction, φ , changes from being a step function to other forms that may or may not contain 

a discontinuity (see Section 2.5).   

 

2.4 Isothermal Phase Change 

For a material that changes phase at a single temperature 
fT , the enthalpy of the liquid and 

that of the solid, can be calculated from Eq. (2.4) as 
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                                        (2.5) 

 

For this type of problem, the temperature field can be calculated using Equation (2.4) as 

follows 
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where ( )ffSLf LTcH += ρ  and fSSf TcH ρ=   are enthalpies per unit volume of the fusion 

liquid and the fusion solid, respectively. These values can also be used in the numerical 

approach for determining whether each grid element is solid, liquid or undergoing 

melting/freezing. Corresponding thermal conductivities are then chosen for that grid 

element. For elements that are undergoing phase change, an average thermal conductivity 

is used.  

 

2.5 Phase Change over a Temperature Range 

For this type of problem, when only one phase exists, the temperature can be calculated as 

explained above. In the mushy zone, however, the liquid fraction needs to be defined at 

each point. As mentioned in [86], the liquid fraction can be a function of a number of 

solidification variables. In many systems, however, it is reasonable to assume that the 

liquid fraction is a function of temperature alone, i.e., 



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≥
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HH
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)(
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where SfH and LfH  are determined from Eq. (2.4) by substituting ( )fSTT == ,0φ  and 

( )fLTT == ,1φ , respectively.  

The function )(~ TF  can assume a number of possible forms, e.g., linear, power, etc., 

depending on the equilibrium phase diagram of the specific materials involved ([85], [86]).  

Once the enthalpy field is determined using the numerical solver at each time step, the 

temperature field needs to be determined. Unlike the isothermal phase change case, an 

explicit expression may not be available for the temperature when LfSf HHH ≤≤ , due to 

the possible complexity of the function )(~ TF . Therefore, a subprogram needs to be linked 

to the main solver, for iterative treatment of Eq. (2.4) in the mushy zone. For this purpose, a 

number of iterative schemes were tried with different forms of )(~ TF . Although 

computationally efficient iterative schemes provide convergence for linear )(~ TF , 

difficulties arise while handling highly non-linear forms of )(~ TF . Extremely flat/steep 

portions of the liquid fraction curve can greatly slow convergence. In order to overcome 

this difficulty, the following numerical technique was used:  

First a sorted array was generated for enthalpy over the mushy zone’s temperature 

range. Then at each time-step, after updating the H- field, for each node that falls in the 

mushy zone, a bi-section search routine was used to determine the corresponding position 

within the pre-calculated enthalpy array. A linear interpolation then suffices for 

determining the temperature. While the bi-section search guarantees the computational 

efficiency of the routine, the discrete pre-calculated enthalpy array can be refined to 



 

 

40 

provide the desired accuracy. The discrete nature of pre-calculated enthalpy array 

eliminated the difficulties associated with the flat/steep portions of )(~ TF , and therefore, 

the routine is effective regardless of the specific shape of the liquid fraction curve. As an 

example, see section 3.4.3. 

 

In the next chapter, numerical modeling of the problem is initiated, starting by 

development of a one dimensional CE/SE phase change solver. 

 
 
 
 
 

4 a 



 

 

41 

Chapter 3  

ONE-DIMENSIONAL CE/SE PHASE-CHANGE 

SCHEME 

It is of value to start the application of the numerical method considering the simplest phase 

change problem, i.e., that of a one-dimensional Cartesian geometry. In this chapter, the 

equations describing this category of problems are briefly reviewed. The space-time CE/SE 

phase change scheme is then developed for the one-dimensional governing equations. The 

study of the behavior of the numerical scheme is divided into two parts: 1) Analytical 

study, and 2) Numerical study.  

1) Analytical study of the scheme, presented here, contains three parts: a) a 

mathematical proof on the equivalence of the CE/SE formulation of the enthalpy 

method with the conventional formulation, both for cases without discontinuity and 

cases having a discontinuity in the domain, b) a von Neumann stability analysis on 

the linearized versions of the phase change scheme. This study leads to derivation 

of a necessary stability condition, c) a study of the dissipative and dispersive 

behavior of the numerical scheme for different Stefan numbers. Parts, (a) and (b) 

are presented in this chapter while part (c) is contained in Chapter 7. 
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2) Numerical study of the scheme consists of application of the actual phase-change 

scheme to several cases for which an analytical solution is available. This way, the 

accuracy of the method is assessed. It is also shown that no non-physical waviness 

is detected using this method, in predicted profiles for temperature and enthalpy. 

Further, a numerical study is presented on the convergence of the scheme for 

different time-steps, leading to a procedure for selecting the optimum time-step for 

the fastest convergence. Finally, one case is studied which involves phase change 

over a temperature range rather than a single fusion temperature.  

At the end of this chapter, the knowledge extracted from the study of the one-dimensional 

scheme, provides the groundwork for extending the method, to higher dimensions and 

more general phase change problems.    

 
3.1 Development of a One-Dimensional CE/SE Scheme for 

Heat Conduction with Melting/Freezing 

The governing equation (Eq.(2.3)), for one spatial dimension, is written as 

 









∂
∂

∂
∂

=
∂
∂

x
T

k
xt

H                                                      (3.1) 

 

Equation (2.6) can be used without change. 

Considering (x, t) as the coordinates of a two-dimensional Euclidean space-time, the 

computational grid that is used here can be regarded as a staggered two-dimensional 
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rectangular mesh. Figure 3.1 shows the computational molecule of this grid for the grid 

node (j, n). Define vector U
v

 as 

 

),( HFU =
r

                                                        (3.2) 

 

where H is enthalpy per unit volume and  

 

x
T

kF
∂
∂

−=                                                         (3.3) 

 

is referred to as the flux function. The integral governing equation can then be written as 

 

0ˆ
)(

=•= ∫
Ω

σdnUI
CE

r
                                                 (3.4) 

 

where )(CEΩ  is the boundary of the rectangle ACDF that represents the conservation 

element (CE) for node (j, n), see Fig. 3.1(a). Vector ( )tx nnn ,ˆ =  represents the unit outward 

normal to the CE, and σd denotes a line element on )(CEΩ .  

 

For discretization, enthalpy and the flux function are represented on each solution element 

(SE) [79], as  

 

( ) ( ) ( ) ( ) ( )j
n
jx

nn
jt

n
j xxttnjtx −Ψ+−Ψ+Ψ=Ψ ,;,                                (3.5) 
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where Ψ can be either H or F, and the notation Ψ (x, t; j, n) is adopted from [87]. The 

subscripts x and t are shorthand notations for the corresponding derivatives. 

Figure 3.1(b) provides a sketch of the solution element related to node (j, n). The 

solution elements need to be defined in order to assign a unique discrete value to the field 

parameters at each grid node2. Using the SE s, consider that the line segments FA and AB 

belong to SE (j-1/2, n-1/2), that the line segments BC and CD belong to SE (j+1/2, n-1/2), 

and that the line segment DF belongs to SE (j, n). The unit outward normals are 

)1,0(ˆˆ −== BCAB nn , )0,1(ˆ =CDn , )1,0(ˆ =DFn , and )0,1(ˆ −=FAn . Equation (3.4) can then be 

written as 
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Using Eq. (3.5), the above becomes 

 

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] 02/12/1

2/1
2/1

2/1

2/12/1
2/1

2/1
2/1

2/1
2/1
2/1

2/1
2/12/1

2/1
2/1

2/1
2/1

=−+−

+−++−+

+−+−+−+−=

∫

∫∫

∫∫

−−
−

−
−

−−
+

−
+

+
−
+

−
+−

−
−

−
−

dtttFF

dxxxHHdtttFF

dxxxHHdxxxHHI

FA

nn
jt

n
j

DF

j
n
jx

n
j

CD

nn
jt

n
j

j
n
jx

n
j

BCAB

j
n
jx

n
j

 (3.7) 

 



 

 

45 

Note that we are using a regular grid in the sense that the solution points3, (points on which 

the solution is saved), and the cell centroids are coincident. Also note that |AB| =|BC| = 

?x/2 and |CD| =| FA| = ?t/2. Using these, we get 
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Noting that 4/2/1
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the above equation becomes 
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rearrangement results in 

 

                                                                                                                                                 
2 More details on the solution elements are available in Chapter 4, where the two-dimensional cases are studied. 
3 More details about the solution points are available in Chapter 4, were the two-dimensional cases are studied. 
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The above equation contains derivatives that need to be calculated. In the CE/SE method, 

the derivatives are treated as independent variables that are solved for. Also note that, based 

on Eq. (3.3), calculation of the first-order derivative of F, (needed in Eq. (3.10)), involves 

calculation of the second-order mixed derivative of the temperature. The following two 

sections contain procedures to treat the derivatives. 

 

3.1.1. First-Order Derivatives 

The first-order derivatives, are calculated using the following weighted average formula  
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and  
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Note that, to avoid dividing by zero, in practice a small positive number such as 10-20 is 

added to the denominator in Eq. (3.12). The parameter Ψ , in the above relations, can be 

either H or T. The value of α~  is usually set equal to 1. As mentioned in [69], the above 

weighted average provides the necessary numerical damping. In other words, α~  can be 

regarded as an adjustable dissipation parameter. In Chapters 4 and 7, we will return to this 

parameter and study its effects in more detail; unless mentioned otherwise, its value is set 

to unity. 

 

3.1.2. Second-Order Derivatives 

The second-order derivatives, required for calculation of Ft are determined using a method 

explained below. 

Using Taylor series to expanding ( ) 2/1
2/1

−
±

n
jxT  about the space-time solution point (j, n), the 

following relation can be written. 
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which results in the following system 
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 Adding the two equations in the above system leads to 
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Therefore, the scheme is built by Eq. (3.10), with derivatives determined from Eqs. (3.11)-

(3.16). 

There exists also another method for treating the second-order derivatives by ignoring 

them on the solution elements [66]. Both methods were tried numerically. The first method 

results in slightly higher accuracies, (the truncation errors were used as a measure for the 

accuracy). The second method offers slightly faster convergence rates, and of course it goes 

through a smaller number of computations. Because the difference in the computational 

times between these two techniques is not significant, the more accurate scheme will be 

used, unless mentioned otherwise.  

 

3.2 On the Equivalence of the CESE Formulation of the 

Enthalpy Method with the Conventional Formulation 

In 1975, Shamsundar and Sparrow [88] provided a demonstration of the equivalence 

between the enthalpy method and the conventional form of the energy conservation 
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equation for the case of a substance with a discrete phase-change temperature. For this 

purpose, they applied the enthalpy form, first to a control volume, fixed in space, which did 

not contain the interface, and then to another control volume through which the interface 

passed. In the first case, because of the continuity of enthalpy and partial derivatives of the 

temperature, the Green’s Theorem [89] can be applied to the integral form, thus, the 

conventional form readily results. In the second case, because of the discontinuity in the 

enthalpy, the conditions needed for validity of the Green’s Theorem [89] are not satisfied. 

For this case, Shamsundar and Sparrow moved the interface in time and studied the limits 

of the conservation laws as the time increment vanished [88].     

 The space-time nature of the CE/SE method’s conservation elements allows us to 

demonstrate that proof in a more straightforward manner. Since the time dimension 

materializes in the shape of the conservation element, the manual movement of the phase 

interface to a new time can be dispensed with. Note that, although the proof is provided 

here for a one-dimensional Cartesian problem, it can be extended without difficulty to 

higher dimensions. 

Consider a one-dimensional heat conduction problem involving solid-liquid phase 

change, for a material that changes phase at a single fusion temperature, Tf. Identical and 

uniform densities are assumed for both phases while other physical properties can vary 

with phase and/or temperature. The classical formulation provides the following governing 

equations in the solid region, in the liquid region, and on the phase interface.  

 

In the liquid region: 
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0=
∂
∂

+
∂
∂

x
F

t
T

cLρ                                                (3.17) 

 

In the solid region: 

0=
∂
∂

+
∂
∂

x
F

t
T

cSρ                                                (3.18) 

 

On the phase interface: 

( ) fTttXT =),(                                                    (3.19) 

 

and 

SLf FF
td
tXd

L −=
)(

ρ                                            (3.20) 

 

where T denotes temperature, t is time, and Lf, ?, c, and k are latent heat of fusion, density, 

specific heat, and conductivity of the material, respectively. X(t) denotes the location of the 

phase interface at time t. Subscripts L and S refer to the solid and liquid phases and F is 

defined as   

x
T

kF
∂
∂

−=                                                      (3.21) 

 

A differential space-time conservation element of the CE/SE method can be visualized as 

rectangle ABCD shown in Fig. 3.2.  
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Points A and B are at time t, while points C and D are the same spatial nodes at time t + dt. 

Considering (x, t) as coordinates of a two-dimensional Euclidean space-time, as mentioned 

in the previous section, the CE/SE formulation provides the following integral equations 

over the space-time conservation element. 

 

0
)(

=•∇∫ dAU
ABCDS

rr
                                                 (3.22) 

 

and  

0ˆ∫
Ω

=• σdnU
r

                                                   (3.23) 

 

 

where S(ABCD) and Ω  denote the surface and the boundary of the rectangle ABCD, 

respectively. Further, dA and σd  denote surface and line elements on S(ABCD) and Ω , 

respectively. The unit outward normal of the rectangle is referred to as n̂  and ),( HFU =
r

. 

Enthalpy per unit volume, H, is defined as 

 

( ){ }∫ −+=
T

ff dTTTLdTcH
0

δρρ                         (3.24) 

 

where d is the Dirac impulse function. 
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First consider the conservation element ABCD with no interface passing through it. 

Since ABCD is an arbitrary conservation element, readily it can be seen that Eq.(3.22) 

leads to the differential form of the governing equation. Since no interface exists, it also 

follows that the Greesn’s Theorem holds and Eq.(3.23) is equivalent to Eq.(3.22). Now 

consider the case where the phase interface falls in the conservation element ABCD. For 

example, as shown in Fig. 3.2, let the interface be located at point S1 at time t, and at point 

S2 at time t + dt. Without any loss in generality, it can be assumed that the portions of the 

rectangle ABCD that are to the left of the line segment S1S2, are in the liquid phase while 

the right portion is solid. Equation (3.23) can then be written as  

 

0ˆˆ =•+• ∫∫
ΩΩ LS

dnUdnU LS σσ
rr

                            (3.25) 

 

where SΩ and LΩ represent solid and liquid portions of Ω , respectively. On the other 

hand, Eq. (3.23) can also be applied to the liquid conservation element DSAS −−
21 , as well as 

the solid conservation element BCSS ++
12 , where plus and minus superscripts relate to the 

immediate liquid and solid neighborhoods of the points S1 and S2, respectively. 

 

0ˆ∫
−Σ+Ω

=•
L

dnUL σ
r

                                        (3.26) 

 

and 
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0ˆ∫
+Σ+Ω

=•
S

dnU S σ
r

                                        (3.27) 

 

where −Σ  and +Σ  are the line segments −−
21 SS  and ++

12 SS , respectively. Adding Eqs. (3.26) 

and (3.27) and subtracting Eq.(3.25) from the resultant relation, provides  

 

0ˆˆ =•+• ∫∫
+− ΣΣ

σσ dnUdnU SL

rr
                                      (3.28) 

 

 

Note that for the first integral in Eq. (3.28), j
d
dx

i
d
dt

n ˆˆˆ
σσ

−=  is the unit normal outward to 

the liquid region, while for the second integral j
d
dx

i
d
dt

n ˆˆˆ
σσ

+−=  is the unit normal 

outward to the solid region. Equation (3.28) then becomes 

 

{ } 0)()(
21

=+−+−∫
SS

SL HdxFdtHdxFdt                                (3.29) 

 

Since the line segment 21SS  is an arbitrary part of the interface, the above equation implies 

the following condition, everywhere on the two sides of the interface. 

 

[ ] 0)()(
21

=+−+− SSSL HdxFdtHdxFdt                               (3.30) 
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Equation (3.30), taking into account Eq. (3.24), gives the classical jump conditions at the 

interface, i.e. 

 

  
f

SL

SS L
FF

dt
dx

ρ
−

=





21

                                              (3.31) 

 

Note that since the slope of S1S2 is in fact the speed at which the interface moves during 

time dt, Eq.(3.31) is equivalent to Eq. (3.20). The equivalence of Eq.(3.23) with Eq.(3.22), 

can then be verified as follows.  

The Green’s Theorem holds in the liquid conservation element DSAS −−
21 , as well as in 

the solid conservation element BCSS ++
12 . Therefore Eqs. (3.26) and (3.27) can be 

substituted by the following two equations respectively. 

 

0
)( 21

=•∇∫
−−

dAU
DSASS

rr
                                                (3.32) 

 

and 

0
)( 12

=•∇∫
++

dAU
BCSSS

rr
                                                (3.33) 

 

Adding the above two leads to Eq. (3.22).  
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Alternatively, Eq. (3.22) can also lead to the conventional form with the jump 

conditions. The proof would not be different from that provided in [33] for the weak 

solutions.  

 

3.3 von Neumann Stability Analysis 

The von Neumann analysis [90], is mainly employed for stability analysis and can provide 

a necessary stability criterion for a linear scheme. Of course the analysis can not be applied 

to an actual phase change problem because of the geometric nonlinearity involved. 

However, application of the analysis to a simplified case of a heat conduction problem, 

non-dimensionalized using the Stefan number in its time scale, can reveal a great deal 

about the stability and dissipative/dispersive behavior of the numerical scheme.  

Consider the heat conduction equation, Eq. (2.1), in one spatial dimension. A non-

dimensional form, adopted from [27], uses the following non-dimensional parameters  

 

2
*

L
t

St t

α
= ,

fref

f

TT

TT
T

−

−
=

.

* , and 
L
x

x =*                              (3.34) 

 

where α  denotes the diffusivity, L is an appropriate length scale, Tf  represents the fusion 

temperature of the material, and Tref. is a reference temperature. The Stefan number St is 

defined as  
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f

fref
t L

TTc
S

)( . −
=                                                 (3.35) 

 

The non-dimensional equation, then becomes 

 

2*

*2

*

* 1

x

T
St

T

t ∂

∂
=

∂
∂

                                                 (3.36) 

 

Application of the CE/SE scheme to Eq.(3.36) results in an equation analogous to 

Eq.(3.10). Dropping the * superscripts, the scheme to be analyzed, becomes 
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                (3.37) 

 

with the first-order derivatives from Eqs.(3.11)-(3.13).  

The second-order derivatives can be determined using each of the two methods 

mentioned in Section 3.1.2. In particular, selection of the second (less complicated) method 

of Section 3.1.2, leads to a scheme involving only two time levels, i.e., time level n and 

time level n – 1/2. Usage of Eq. (3.16), on the other hand, results in a scheme involving 
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three time levels, i.e., time levels n, n – 1/2, and n – 1. Both methods are applied and 

studied in the following sections.  

Further, selection of different values for α~  in Eq. (3.12), can lead to different schemes. 

In particular, 0~ =α  leads to linear schemes, while non-zero values for α~  cause non-

linearity in determination of the first-order derivatives. Both situations are studied in the 

following sections.    

 

3.2.1 Linear Scheme without Second-Order Derivatives 

Among the variations mentioned in the previous section, the simplest one is a linear 

scheme without second-order derivatives. In order to generate this scheme, set the second-

order derivatives, in Eq. (3.37) equal to zero. Further, substitute for the first-order 

derivatives from Eqs. (3.11)-(3.13), using 0~ =α . The scheme becomes 
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TTT
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TTT

            (3.38) 

 

The von Neumann analysis can then be applied to the above equation by substituting 

θjinn
j eAT = , where A is the disturbance amplitude, 1−=i , and θ  is the wave number 

multiplied by ∆ x. After algebraic manipulations, the amplification factor, G, is found as 

follows  
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( )
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     (3.39) 

 

Now using )(sin)(cos θθθ mme mi +=  in the above equation we get 

 







 −+=

2
cos1

2
cos 2 θ

σ
θ

G                                 (3.40) 

 

where  

( ) tSx

t
2

2
2
1

∆

∆
−≡σ                                       (3.41) 

 

Two conclusions may be drawn from Eq. (3.42): one regarding the necessary stability 

condition and the other regarding the method’s dissipation and dispersion. The former is 

found by requiring 1≤G , or  

 

11 ≤≤− G                                              (3.42) 

 

This inequality can be studied in two parts:  
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a) 1≤G . Using Eq. (3.40), we get 

 

1
2

cos1
2

cos 2 ≤





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θ
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θ
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2
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2
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or 
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Since 0
2

cos1 ≥−
θ

, for the above inequality to hold, we need 
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
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θ
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But, since  

2
2

cos10 ≤+≤
θ

                                         (3.48) 
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for inequality (3.47) to hold we need 

2
1

≤σ                                                  (3.49) 

 

Considering Eq. (3.41), and the fact that the St number is defined to be positive, it follows 

that inequality (3.49) always holds. Therefore, part (a) does not lead to any stability 

restriction.  

 

b) 1−≥G . Using Eq. (3.40), we get 
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Since, 0
2

cos1 ≥+
θ

, for the above inequality to hold, we need 

0
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θ
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To study the above inequality, consider the following two cases: 
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i) 0≥σ . Since, 01
2

cos ≤−
θ

, for this case inequality (3.53) holds and therefore it does not 

lead to stability restriction. 

ii) 0<σ . Since 

01
2

cos2 ≤−≤−
θ

                                        (3.54) 

 

the worst case for (3.53) would be when 21
2

cos −=−
θ

, which leads to  

 

12 ≤− σ  

or 

2
1−

≥σ                                                 (3.55) 

 

or, using Eq. (3.41), 

 

( ) 2
1

2 ≤
∆

∆

tSx

t
                                         (3.56) 

 

Inequality (3.55), can be obtained, alternatively, as follows4 

                                                 
4 This procedure was provided by Dr. Sin-Chung Chang in his review comments. 
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Consider inequality (3.53). If 01
2

cos =−
θ

, (3.53) holds for all σ . Now consider all cases 

where  

 

01
2

cos ≠−
θ

                                            (3.57) 

 

Inequality (3.54), then becomes 

 

01
2

cos2 <−≤−
θ

                                        (3.58) 

 

Using (3.57) and (3.58), inequality (3.53) can be written as  
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Further, (3.58) yields  

1
2

cos

1
2
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−
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θ
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Considering (3.59) and (3.60), one concludes that inequality (3.55), (and therefore, (3.56)), 

is the stability restriction. 
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Figures 3.3-3.5 demonstrate plots of the amplification factor G, (see Eq. (3.40)), versus 

the Stefan number. These figures contain a graphic representation of the stability criterion 

in Eq. (3.56). Figures 3.3-3.5 are generated for 05.0=∆ x and different time-steps. For 

example, Fig. 3.3 shows that, for 310−=∆ t , reduction of the Stefan number to values 

smaller than 77.0* ≅tS , leads to unstable results. This minimum Stable Stefan number, 

)( *
tS , reduces to 0.08 for 410−=∆ t , as seen in Fig. 3.4. Therefore, derivation of Eq. (3.56) 

is graphically confirmed. By reducing the time-step to 610−=∆ t , as sown in Fig. 3.5, even 

for 01.0=tS , which is the smallest Stefan number used in generating this figure, the 

stability criterion still holds.  

Numerical experiments were also performed in order to confirm the above analysis. 

Considering (3.56), it is seen that the numerical examination should be done in two steps: 

1) study of the effect of the Stefan number on the stability while the spatial increment is 

fixed, and 2) study of the effect of the spatial grid spacing on the stability while the Stefan 

number is fixed. The results of these numerical experiments are presented in Tables 3.1 and 

3.2.  

 
 

Stefan number 
t∆  

(edge of stability) ( ) tSx

t
2∆

∆
 

(edge of stability) 
0.01 5.04 × 10 -5 0.5040 
0.1 5.04 × 10 -4 0.5040 
1 5.04 × 10 -3 0.5040 
10 5.04 × 10 -2 0.5040 

 
Table 3.1: Numerical experiments of stability: effect of the 

Stefan number  
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x∆  t∆  
(edge of stability) ( ) tSx

t
2∆

∆
 

(edge of stability) 

10
1

 5.04 × 10 -2 0.5040 

20
1

 1.25 × 10 -2 0.5000 

30
1

 5.55 × 10 -3 0.4995 

40
1

 3.125 × 10 -3 0.5000 

 
Table 3.2: Numerical experiments of stability: effect of the 

spatial increment 

Table 3.1 presents the time-step, at the edge of stability, for a spatial increment 

1.0=∆ x , for different Stefan numbers. These results show that, for a specified spatial 

increment, smaller time-steps are needed for stability, as the Stefan number is reduced. 

Further, the stability criterion of (3.56) is also confirmed, on a fixed spatial grid. 

Table 3.2, on the other hand, is generated for cases with 10=tS , but on different spatial 

grids. Using these cases, the dependence of the time-step at the edge of stability, on the 

spatial grid spacing, is examined. Results confirm that, (3.56) holds, for a fixed Stefan 

number. Combining results of Tables 3.1 and 3.2, the stability criterion of (3.56) is 

confirmed. 

It is worthwhile to note that, the above condition may not be sufficient for the stability 

of the original phase change scheme, or even the heat conduction equation in higher 

dimensions. It can, however, be used as a starting point. It also shows that by reducing the 
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Stefan number, while using the same spatial increments, stability may require smaller time 

increments.  

The amplification factor in Eq. (3.40), also reveals insight regarding the 

dissipative/dispersive behavior of the scheme. In Chapter 7, we return to this analysis and 

use it to study dissipative/dispersive behavior of the numerical method. 

 

3.2.2 Linear Scheme with Second-Order Derivatives 

The equation for this scheme can be generated by substituting for the second-order 

derivatives in Eq. (3.37), from Eq. (3.16). The first-order derivatives are treated similar to 

Section 3.2.1.  The scheme becomes  
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            (3.61) 

 

As can be seen, three time levels are involved in Eq. (3.61). Similar to Section 3.2.1, the 

von Neumann analysis can be applied to Eq. (3.61) to produce 
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where 
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4
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G , Eq. (3.62) can be written as the following quadratic 

equation. 
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Solving Eq. (3.64) produces 
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The above amplification factor, although too complicated for analytical stability analysis, 

can be studied numerically. Figures 3.6-3.8 contain plots of the amplification factor of Eq. 

(3.56), versus the Stefan number, using the negative sign. Usage of the positive sign shows 

a scheme that is stable even for relatively large time-steps. This behavior is inconsistent 

with the numerical experiments. The positive sign was, therefore, discarded. All figures are 

generated using 05.0=∆ x . A pattern similar to Figs. 3.3-3.5 is also seen in Figs. 3.6-3.8. 
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Again, in Figs. 3.6 and 3.8, the value of *
tS  leads to a stability criterion as follows. In Fig. 

3.6, the stability is confirmed for Stefan numbers larger than 0.86. In other words the 

stability criterion can be determined as 
( )

465.0
86.0)05.0(

10
2

3

2
≅

×
≤

∆

∆ −

tSx

t
. A similar 

calculation, for Fig. 3.7, provides 
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465.0
43.0)05.0(

105
2
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2
≅

×
×

≤
∆

∆ −

tSx

t
. Finally, the time-

step is reduced to 5101.1 −×  in Fig. 3.8. For this case the stability criterion holds, even for 

the smallest Stefan number present in the figure, that is 01.0=tS . These figures also 

contain information about the dissipative / dispersive behavior of the scheme as discussed 

in Chapter 7.  

Numerical experiments were also performed for this scheme. Again, it was seen that 

reducing of the Stefan number, has a destabilizing effect. The results were similar to Tables 

3.1 and 3.2, except for the value of 
( ) tSx

t
2∆

∆
 at the edge of stability. In fact, the 

numerical experiments determined the stability criterion for this scheme to be 

 

( )
4667.02 ≤

∆

∆

tSx

t
                                      (3.66) 

 

 

Therefore, addition of the second-order derivatives to the scheme has, as expected, a 

destabilizing effect.   
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Further, the values 0.4667 agrees with the value graphically extracted from Figs. 3.6-

3.8, based on the analytical amplification factor of Eq. (3.56).  

 

3.2.3 Non-Linear Scheme without Second-Order Derivatives 

In order to generate this scheme, set the second-order derivatives, in Eq. (3.37) equal to 

zero. Further, substitute for the first-order derivatives from Eqs. (3.11)-(3.13), using 1~ =α . 

After substitutions, the scheme becomes 
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and using 1~ =α  
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As can be seen, the above equation is non- linear and, therefore, the von-Neumann analysis 

is inapplicable. Numerical experiments need be used for stability analysis. These 

experiments result in a stability criterion similar to the linear scheme without second-order 

derivatives, see Section 3.3.1.  

The difference between this scheme and the corresponding linear scheme, explained in 

Section 3.3.1, is seen for time-steps larger than that required for stability. In the linear 

scheme, time-steps slightly above the edge of stability, cause unbounded rapid growth in 

the errors. In the non-linear scheme, there is a zone of time-steps, above the edge of 

stability, that result in non-vanishing, but bounded, errors. This comparison shows that the 

non-linear scheme has higher dissipation compared to the linear scheme, whereas the linear 

scheme has more dispersion.    

3.2.4  Non-Linear Scheme with Second-Order Derivatives 

Finally, this is the actual scheme used throughout this thesis. Similar to the previous 

section, the non- linearity inherent in this scheme makes the von-Neumann stability analysis 

inapplicable. Numerical experiments confirm that (3.66) is still valid as the stability 

criterion for this scheme.  

Similar to the previous section, the difference between this scheme and the 

corresponding linear scheme, explained in Section 3.3.2, is seen for time-steps larger than 

that required for stability. In the linear scheme, for example, 
( )

4668.02 >
∆

∆

tSx

t
 leads to 

unbounded rapid growth of the errors. In the non- linear scheme, on the other hand, for 



 

 

70 

( )
6550.04668.0 2 ≤

∆

∆
≤

tSx

t
 the errors remain bounded and the rapid unbounded error 

growth does not start until 
( )

6550.02 >
∆

∆

tSx

t
. This comparison, again, shows that the 

non-linear scheme has higher dissipation compared to the linear scheme, whereas the linear 

scheme has more dispersion.    

 

3.4 Validation tests 

To assess the accuracy and effectiveness of the CE/SE method applied to conduction 

problems with phase change, several classical cases were studied. The results were 

compared to analytical solutions and the method was found to be accurate, robust and 

efficient. Details of the validation tests, as well as numerical study of the convergence and 

error behavior follows. 

 

3.4.1 Steady Linear Case 

To validate the program, it is good to start from a very simple problem. For our case, that 

would be a linear steady state conduction problem without phase change, i.e., 

 

H = T and T = x                                         (3.69) 

 

Obviously, this distribution satisfies the governing equation (Eq. (3.1)). Using Eq. (3.3) for 

unit conductivity, the following flux functions are obtained 
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F = -Tx = -1, Fx = -Txx = 0, and Ft = -Txt = 0                   (3.70) 

 

The correct distribution mentioned above was applied to the boundaries and a uniform error 

distribution was used as initial conditions. For this steady state case, CE/SE method is 

exact, in the sense that no truncation error exists. This can be shown analytically as 

follows: Using Eqs. (3.69) and (3.70) in Eq. (3.10), we get  
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Using this in Eq. (3.11), then yields  

( ) 1=n
jxH  

Similarly  

( ) 1=n
jxT  

and using Eq. (3.16) 

( ) [ ] 0112 =∆−−= tT n
jxt  

 

Therefore, if Eqs. (3.69) and (3.70) are applied to the boundaries of a line segment of unit 

length and an error distribution over the entire domain is used as initial condition, for a 

suitable time step (i.e. one that leads to stability), the code should be able to proceed and 

finally produce the correct distribution everywhere in the field. This was observed in 
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practice. This simple problem can be a great help in the study of time step effects on 

stability and convergence rate. One can also use this case for selecting the optimum time 

step for a particular spatial grid. For this purpose, different time-steps are used on a fixed 

spatial grid, and the evolution of the errors associated with each case is studied. Error is 

defined as the infinity norm of the absolute value of the difference between numerical and 

exact values of T, over the entire domain. Numerical experiments reveal the existence of 

three time-step zones: 

1) Large time steps leading to enlarging errors, 

2) Medium time steps leading to non-vanishing but bounded errors for which the 

upper error bound reduces with reducing time step, 

3) Small enough time steps that lead to stable, time step independent results, with 

errors vanishing to the order of machine zero. 

Zone 3, in itself, is divided into two sub-zones:  

a) Larger time-steps, for which the convergence rate decreases by enlarging the 

time-step, 

b) Smaller time-steps, for which the convergence rate increases by enlarging the 

time-step. 

The above two sub-zones are separated by the optimum time-step, which results in the 

fastest convergence rate. Figures 3.9 and 3.10 provide an illustration for the one-

dimensional case’s zone 3. 
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Figure 3.9 shows the reduction of the errors to the order of machine zero. Figure 3.10, 

provides an illustration of the optimum time-step for two different spatial grid increments. 

Further conclusions drawn from this figure are: 

o The magnitude of the optimum time-step decreases by refining the spatial grid. This 

was to be expected because of the stability criterion. 

o  The rate of convergence decreases by refining the grid. This fact is common among 

the numerical methods.  

More details on the effects of spatial grid increments, time-dependent boundary conditions 

and numerical investigation of the order of accuracy of the method are discussed in the 

following chapters.  

 

3.4.2 Single-Phase Stefan Problem 

In order to assess the accuracy of the one-dimensional phase change scheme, a single-phase 

Stefan problem is used as a benchmark, under the following conditions. 

Consider a slab of thickness L = 1 with the initial state assumed to be liquid at the fusion 

temperature Tf. At 0=t , the temperature of the surface at 0=x  drops to TW and is 

maintained at that value. The surface at Lx =  is effectively insulated. The analytical 

solution of this problem, containing the transient temperature distributions and the phase 

front location, can be found in [69]5. This problem is studied numerically for a Stefan 

numbers of 3. The case is modeled using a uniform spatial grid containing 1,100 nodes. 

                                                 
5 For more details about this benchmark problem see Chapter 4.  
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Other parameters are CTW
o0.1−= , CT f

o0.0= , while the thermal diffusivity and specific 

heats are set equal to unity.   

Figure 3.11 demonstrates the temperature distribution at t = 0.14 s for the above 

problem. As can be seen, excellent agreement is achieved in comparison to the exact 

solution. The same observation can be made from Fig. 3.12. This plot represents the 

corresponding enthalpy curve. Here it is seen that the sharp jump in the enthalpy, at the 

phase front, is perfectly resolved. Similar results are obtained for other Stefan numbers. 

 

3.4.3 One-Dimensional Solidification of the Binary Al-4.5% Cu Alloy  

The physical situation considered thus far has involved isothermal phase change. To solve 

problems involving phase change over a temperature range, (see Section 2.5), the computer 

program was then extended. The benchmark problem used here is similar to the one 

explained in the previous section, except that in this case a mushy zone exits. Properties of 

the material, the relationship between the temperature and the liquid fraction in the mushy 

zone, as well as a semi-analytical solution (using a heat balance approach), are adopted 

from [86]. The problem involves solidification of the Binary Al-4.5% Cu Alloy. The 

function )(~ TF (see Equation (2.7)), for this material is given as 
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F TTT
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                      (3.71) 

 



 

 

75 

where β  = 1.163, fLT = 919 K, fST = 821 K, and FT = 933 K is the freezing point of the 

solvent. Examination of Eq. (3.71) reveals a temperature range associated with a non- linear 

)(~ TF  accompanied by a step discontinuity (an isothermal phase change) at the eutectic 

temperature, fST  [86]. Other properties of the material are listed in Table 3.3. Initially, the 

material is assumed to be at fLT . A Dirichlet boundary condition of T = 573 K is imposed 

at x = 0, at time t = 0. The geometry is assumed to be a line segment of length 0.2 m. The 

spatial grid is uniform and contains 200 nodes. Figure 3.13 shows the results obtained 

using the one-dimensional extended scheme, compared to the semi-analytical solution from 

[86]. Figure 3.14 is a plot of the liquid fraction versus temperature for this problem. This 

case confirms the space-time CE/SE method’s potential as an effective alternative 

numerical scheme for a general phase change problem. 

 
Property Value Property Value 

Sc  900 Kkg
J

.  Lc  1100 Kkg
J

.  

Sk  200 Km
W

.  Lk  90 Km
W

.  

ρ  2800 3m
kg  fL  3.9 510×  kg

J  

 
Table 3.3: Properties of a binary Al-4.5% Cu alloy from [86]  
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(a) 

 

(b) 

Figure 3.1: Computational molecule of the CE/SE method, (a) 
CE (j, n) and (b) SE (j, n) 

 

 
 

Figure 3.2: Space-time conservation element containing the 
phase interface 
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Figure 3.3: The amplification factor for time step equal to 1.E-
3, for the linear scheme without the second-order derivatives  

 
 

Figure 3.4: The amplification factor for time step equal to 1.E-
4, for the linear scheme without the second-order derivatives 
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Figure 3.5: The amplification factor for time step equal to 1.E-
6, for the linear scheme without the second-order derivatives 

 
 

Figure 3.6: The amplification factor for time step equal to 1.E-
3, for the linear scheme with the second-order derivatives 
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Figure 3.7: The amplification factor for time step equal to 5.E-
4, for the linear scheme with the second-order derivatives 

 

Figure 3.8: The amplification factor for time step equal to 
1.1E-5, for the linear scheme with the second-order 

derivatives 
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Figure 3.9: Time step zone 3 for one-dimensional code; 

vanishing errors for different time -steps 

 
Figure 3.10: Optimum time-step 
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Figure 3.11: Temperature profile at t = 0.14 s 

 
Figure 3.12: Enthalpy distribution at t = 0.14 s 
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Figure 3.13: Solidification of the binary Al-4.5% Cu alloy 
from [86] 

 
Figure 3.14: The l iquid fraction function 

a 
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Chapter 4  

 

TWO-DIMENSIONAL CE/SE PHASE-CHANGE 

SCHEME 

Many aspects of the behavior of a numerical scheme can be studied using its one-

dimensional version. However, because of the geometric simplicity of such cases, many 

features may as well remain unrevealed. Further, features such as the one-dimensional 

stability condition, although useful as an initial guess, may not be readily extendable to 

higher dimensions. Finally, in order to make the phase change solver as general as possible, 

development of a two-dimensional version is essential.  

In this chapter, the two-dimensional CE/SE phase change scheme is derived. Its error 

behavior, convergence properties, and order of accuracy are studied numerically. The 

computer program developed from this methodology is then validated using several phase 

change benchmark problems. It is founf to be accurate. Further, temperature profiles and 

interface locations are resolved without non-physical oscillations. The behavior of the 

scheme is also studied at the problematic limit of small Stefan numbers.     
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4.1 Development of a Two-Dimensional Space-Time CE/SE 

Scheme for Heat Conduction with Melting/ Freezing 

The governing equation (Eq.(2.3)), for two spatial dimensions, is written as 

 


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∂
y
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k
yx

T
k

xt
H                                    (4.1) 

 

Equation (2.6) can be used without change. Define vector U
r

 as  

 

),,( HGFU =
r

                                              (4.2) 

 

where H is enthalpy per unit volume and 

 

y
T

kG
x
T

kF
∂
∂

−=
∂
∂

−= ,                                       (4.3) 

 

are referred to as the flux functions. Considering ),,( tyx  as the coordinates of a three-

dimensional Euclidean space-time, the computational grid that is used here can be 

explained as follows. The spatial projection of the grid is a two-dimensional, unstructured 

mesh which consists of Delaunay triangulation [91] on the xy-plane that, considering the 

time axis as the third dimension, makes prisms perpendicular to the xy-plane. The 

computational molecule of this grid is shown in Fig. 4.1(a), where nodes V1, V2, and V3 are 
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the vertices of a triangular cell j at time level n – 1/2, with C as its centroid, while points 

1C , 2C , and 3C  denote the centroids of three neighboring cells j1, j2, and j3, respectively. 

The neighbors are named in a way that any vertex Vk, k = 1, 2, and 3, of cell j faces the side 

shared by cell j and its neighbor jk. Primed points represent the same spatial nodes one-half 

time-step later. For each cell, the integral form of the governing equation may be applied to 

the octahedral element that is the union of three tetragonal prisms: C V2 C1 V3 3V ′ C′ 2V ′ 1C ′ , 

C V3 C2 V1 1V ′ C′ 3V ′
2C′ , and C V1 C3 V2 2V ′ C ′ 1V ′ 3C ′ . The octahedron will be called the 

Conservation Element , (CE), of cell j. The integral conservation law will then be 

 

0ˆ
)(

=•∫ dsnU
CES

r
                                             (4.4) 

 

where S(CE) denotes the boundary of the conservation element while ( )( )tyx nnnn ,,ˆ =  and 

ds, respectively, denote the unit outward normal vector and the area of a surface element on 

S(CE).  In order to perform the above surface integration, U
r

 may be replaced by a first 

order Taylor series approximation about a suitably chosen node, (called a solution point), 

where the discretized values of U
r

 and its derivatives are saved. In this method both U
r

 and 

its first-order derivatives are considered the independent variables which must be 

determined. By “suitably chosen”, as will be shown shortly, it is intended that solution 

points are selected such that the method is explicit.  Let ),( jj yx ′′  represent the spatial 

coordinates of the solution point related to cell j. Therefore, components of U
r

 may be 

approximated as 
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( ) ( ) ( )
( ) ( ) ( ) ( )nn

jtj
n

jy

j
n
jx

n
j

ttyy

xxnjtyx

−Ψ+′−Ψ+

′−Ψ+Ψ=Ψ ,;,,
                         (4.5) 

 

where n
jΨ , ( )n

jxΨ , ( )n

jyΨ , and ( )n
jtΨ  are constant coefficients associated with the solution 

point ( )n
jj tyx ,, ′′ , and Ψ can be any of the components of U

r
. Further, the derivatives of F 

and G can be found from Eq. (4.3), i.e.,  
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where the coefficients ( ) n
jxxT , ( )n

jxyT , ( ) n
jxtT , ( ) n

jyxT , ( ) n

jyyT  and ( )n

jytT  will be calculated 

later in the section related to the  second-order derivatives. 

In Eq. (4.5), the notation ( )njtyxH ,;,,  [87] means the value of H at the point (x, y, t) is 

evaluated using the nodal values saved at the solution point ( )n
jj tyx ,, ′′ . The reason these 

need to be defined can be understood by considering the fact that each point on any of the 

surfaces indicated in Fig. 4.1(a) may be evaluated using different discrete values, e.g., the 

value of U
r

 at a point on the CVCV ′′11  plane may be found using the expansion point of cell 

j at time level n as well as time level n – 1 / 2. Also, the value of U
r

 at a point on the 

312 VCCV  plane may be found using the expansion point of cell j at time level n – 1 / 2 as 
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well as that of the neighboring cell, j1, at the same time level. To assign a unique value to 

each surface point while integrating, each surface needs to be related to one and only one (j, 

n) entity, which is called a solution element, (SE). Consequently, solution elements must be 

defined so that each component surface on the boundary of any conservation element 

belongs to an assigned solution element. Figure  4.1(b) shows two of four solution elements 

related to the cell j, i.e., SE (j ,  n) which consists of the hexagon 1C ′ 3V ′ 2C′ 1V ′ 3C′ 2V ′  

combined with three vertical rectangular planes cutting through it, SE ( )21,3 −nj  that 

consists of the hexagon C V1A B D V2 combined with three vertical rectangular planes 

cutting through it, where A, B, and D are related to the neighbor j3 of  cell j (not shown), 

and two other SE’s ( )21,1 −nj  and ( )21,2 −nj  that are built the same way. Using the 

notation convention introduced in [65], consider the SE ( )21,1 −nj . The two lateral faces 

related to this SE, i.e., 1221 CVVC ′′  and 1331 CVVC ′′ , (see Fig. 4.1(a)), will be referred to as 

S(1, 1) and S(2, 1), respectively. Furthermore, the areas of S(1, 1) and S(2, 1) will be 

referred to as )1,1(S  and )1,2(S , respectively, while )1,1(n̂ , and )1,2(n̂  represent the unit normals 

of the above lateral faces, outward with respect to the octahedron. Furthermore, spatial 

coordinates of the centroid of each of these faces will be referred to as ( ))1,1()1,1( , cc yx , and 

( ))1,2()1,2( , cc yx , respectively. Also the surface 231 VCVC , that is the horizontal plane related 

to this SE, will be called S(1), while its area and will be referred to as )1(S . The unit 

outward normal to this surface is (0, 0, -1). In general, for SE ( )21, −njk , k = 1, 2, 3, the 

lateral faces will be called S(l, k), while their area, unit outward normal, and the spatial 

coordinates of their centroid will be referred to as ),( klS , )0,,(ˆ ),(),(),( kl
y

kl
x

kl nnn = , and 
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( )),(),( , kl
c

kl
c yx , l = 1, 2, respectively. Also the corresponding horizontal plane will be 

denoted by S(k), while its area, and the spatial coordinates of its centroid will be 

represented by )(kS , and ( ))()( , k
c

k
c yx , respectively. Note that the so-called horizontal 

planes form the bottom of the octahedron. The horizontal planes that contain the top of the 

octahedron, however, belong to SE (j, n). The area and spatial coordinates of the centroid of 

the top surfaces are equal to those of the bottom surfaces but their unit outward normal is 

(0, 0, +1). Using the above conventions and performing the inner products, Eq. (4.4) can be 

written as  
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                 (4.7) 

 

where the first and second integrals are performed over the top and bottom surfaces, 

respectively, and the third integral is related to the lateral faces of the octahedral CE. Using 

Eq. (4.5), the third integral of Eq. (4.7) can be evaluated as follows 
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Rearranging leads to  
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But ∫
),( klS

ds  is the area of the corresponding lateral face and the rest of the above integrals 

may be evaluated using the space-time coordinates of its centroid. Therefore, the integral 

becomes 
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Following a similar procedure, the first and second integrals of Eq. (4.7) become  
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and 
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respectively. Equation (4.7), after substitution of the evaluated integrals, provides an 

expression for n
jH . The expression contains three unknowns ( ) n

jx
n
j HH , , and ( ) n

jyH , but 

examination of the expressions which contain ( ) n
jxH  and ( ) n

jyH  suggests that they may be 

eliminated, resulting in an explicit method, provided the solution point is chosen at the 

centroid of the hexagon C1V3C2V1C3V2 formed by the vertices of cell j and the centroids of 

its three neighbors. Using this, the equation for n
jH  can be written in a convenient manner. 

Note that despite the apparent complexity, the equation for n
jH  is in fact composed of three 

similar parts, each related to one of the neighboring cells. 
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where 
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1
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l

kl
k
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c

k
c

kk InjtyxHSR                   (4.14) 

 

and ),( klI  is evaluated using Eq. (4.10). 

The above formulation has the important attribute of being able to handle nonlinearities 

that may exist in the definition of functions H, F and G. 

Once the values of enthalpy are updated over the entire domain, Eq. (2.6) can be used to 

obtain the temperature field, and the first and second order derivatives of the field 

parameters may be calculated as presented in the following sections. 

 

4.1.1. First-Order Derivatives 

As described in detail in [87], the first-order derivatives of the field parameters can be 

evaluated from 
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where      

( ) ( ) 3,2,1,
2)(2)( =Ψ+Ψ= kk

y
k

xkθ                             (4.16) 
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and, for any given integer, k = 1, 2, 3, }3,2,1{},{}{ =∪ pmk . Parameters )(k
xΨ  and )(k

yΨ are 

calculated solving the following three systems, each containing two equations and two 

unknowns. Parameter Ψ can be either H or T. 

 

3,2,)()( )1()1( =Ψ−Ψ=Ψ′−′+Ψ′−′ kyyxx n
j

n
jyjjxjj kkk

 

3,1,)()( )2()2( =Ψ−Ψ=Ψ′−′+Ψ′−′ kyyxx n
j

n
jyjjxjj kkk

       (4.17) 

2,1,)()( )3()3( =Ψ−Ψ=Ψ′−′+Ψ′−′ kyyxx n
j

n
jyjjxjj kkk

 

 

The constant α~ , in Eq.(4.15), is usually set equal to 1. The above weighted average 

provides the necessary numerical damping [69]. Note that, to avoid dividing by zero, in 

practice a small positive number (e.g. 10-20) is added to the denominators in Eq. (4.15).  

 

4.1.2. Second-Order Derivatives 

As explained in [69], once the first order derivatives of the temperature field are known, 

expanding ( ) 3,2,1,21 =− kT n
jx k

, which is saved at the solution point )21,( −nS k  about the 

space-time solution point ),( nS , results in three equations 
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These may be solved simultaneously for ( ) n
jxxT , ( ) n

jxyT , and ( ) n
jxtT . A similar system gives 

( ) n

jyxT , ( ) n

jyyT , and ( ) n

jytT . Using this technique, the mesh values of second-order 

derivatives of T can be evaluated in order to be used in Eq. (4.6). The first-order derivatives 

of flux functions, evaluated from Eq. (4.6), can then be used in Eq. (4.13). 

 

4.1.3. Boundary Conditions 

In order to treat the boundary conditions, a ghost cell is defined for each boundary cell. 

Geometrically, the ghost cell is a mirror image of the corresponding boundary cell with 

respect to the boundary, as shown in Fig. 4.2 where jS  and gS  denote solution points 

related to the boundary cell and the ghost cell, respectively, and B is the intersection of the 

line segment gS jS  with the boundary. Let Ψ  be a field parameter, which can be either 

enthalpy or temperature. 

1) Constant temperature boundary .ConstB =Ψ : 

Using a linear interpolation      

                                                              

jBg Ψ−Ψ=Ψ 2                                           (4.19) 

 

All the derivatives at “g” may then be set equal to their corresponding values at 

“j”. 



 

 

94 

 

 

2) An insulated boundary or axis of symmetry: 

Let σ  and τ  be the normal and tangential directions to the boundary, 

respectively. The insulation condition is then 0=







∂
∂

boundary

T
σ

 and considering 

σσ ∂
∂

=
∂
∂ T

c
H

 it also leads to 0=







∂
∂

boundary

H
σ

.  The reader is referred to [87] 

for details of reflecting boundary conditions.6 

 

4.2 Numerical results and discussion 

 To assess the accuracy and effectiveness of the two-dimensional CE/SE method applied to 

conduction problems with phase change, several classical cases were solved and the results 

were compared to the existing analytical solutions.  

In order to begin the validation of the computer program, and specially to study the error 

behavior of the numerical scheme, the following two cases were designed and applied to a 

unit square geometry, with 1=k . 

 

Case 1.                             TH =  and yxT += ,                                        (4.20) 

 

Case 2.                    TH =  and ( ) 22 22 yxtT ++= .                             (4.21) 

                                                 
6 Also see Chapter 6, where the insulated boundary conditions are derived, in detail, for a general three-dimensional 

problem. Further, see Chapter 5 for boundary conditions of the third kind, i.e., convective boundary conditions.   
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As can be seen, the above temperature distributions satisfy the governing equation, (Eq. 

(4.1)). The following, contains the details of the above cases, along with several other 

phase change validation cases. 

 

4.2.1 The Steady Linear Case 

This case is a steady linear problem, for which it can be easily shown that the CE/SE 

formulation is exact, in the sense that no truncation error exists. Therefore, the spatial grid 

is not an issue in this case. On the other hand, the time-step issue needs to be studied. 

Equation (4.20) was applied on the boundaries, with an initially imposed error distribution 

over the entire domain. The results confirmed that, after a period of time, the temperature 

converges to the accurate distribution everywhere in the field.   

The error behavior was studied, for the steady case above, for different time-steps. Since 

the present method is explicit, there are stability restrictions on the time-step. Numerical 

experiments reveal the existence of three time-step zones: 

1) Large time steps leading to enlarging errors. 

2) Medium time steps leading to non-vanishing but bounded errors for which the 

upper error bound reduces with reducing time step. This zone can be seen in 

Fig. 4.3, where absolute error (norm of infinity of the difference between the 

numerical and exact solutions) is depicted versus the iterations. 

3) Small time steps that lead to stable, time step independent results, with errors 

vanishing to the order of machine zero. This zone is shown in Fig. 4.4. As can 
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be seen, the fastest convergence rate is achieved by using the largest time-step 

that falls within this category. 

Figure 4.4 also shows that once the lower bound is achieved, the errors do not grow with 

further iteration. Additional numerical experiments confirmed the following facts: a) The 

same pattern was detected for other problems, b) once the time-step is selected for a spatial 

mesh, it can be used for other phase-change problems on the same mesh. 

    It is worthwhile to note that in both zone 2 and zone 3, a stable converged solution is 

achievable, while only one of them gives the correct solution. This problem can be easily 

resolved noting that by slightly changing the time-step in zone 2, results change 

dramatically, a phenomenon that does not occur in zone 3. Based on the above results, the 

procedure of choosing the optimum time-step for a spatial grid, may be summarized as 

starting from a large time-step, (a good initial guess could be obtained from the one-

dimensional, necessary, stability condition derived in the previous chapter), and reducing it 

until stable, time-step independent results are achieved.  

Comparison of the above zone 3 with the zone 3 of the one-dimensional version, (see 

section 3.4.1), confirms the fact that the two-dimensional stability criterion is more 

restrictive. Zone 3(a) of the one-dimensional case does not exist for its two-dimensional 

counterpart.   

 

4.2.2 A Problem with Time-Dependent Boundary Conditions  

For this transient problem, unlike the previous case, there is a truncation error associated 

with the second-order accuracy of the CE/SE method. Clearly, this error should decrease by 
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using finer spatial grids. Equation (4.21) was applied on the boundaries. Both the exact 

solution and a uniform error distribution were used as initial conditions. Several spatial 

grids were used for this case. A grid that has 50 nodes on each side of the unit square will 

be referred to as the coarse grid, while the so-called fine grid consists of 100 nodes on each 

side of the unit square. The absolute errors (error is defined as the infinity norm of the 

absolute value of the difference between the numerical and exact solutions over the entire 

domain) are shown in Fig. 4.5. This figure confirms that refining the grid reduces the size 

of the truncation error. The rate of this decrease is related to the actual order of accuracy of 

the numerical scheme. Therefore, using a number of different spatial grid increments, we 

can numerically demonstrate that the method is second-order. In Fig. 4.6, the average 

absolute errors are plotted versus the spatial grid spacing. Examining the slope of this log-

log plot, the second-order accuracy of the method is confirmed. 

 

4.2.3 Freezing of a Finite Slab (a One-Phase Stefan Problem)   

Consider a slab of thickness L with the initial state assumed to be liquid at the fusion 

temperature fT  (Fig. 4.7). At 0=t , the temperature of the surface at 0=x  drops to WT  

and is held there. The surface at Lx =  is effectively insulated. The analytical solution of 

this problem, from [92] determines the phase change interface is located at   

 

tx sαγ2.int =                                           (4.22) 
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where  sα  is the thermal diffusivity of the solid phase and γ  is obtained by solving  

 

π
γγ γ

f

Wfs

L

TTc
erfe

)(
)(

2 −
=                                     (4.23) 

 

where sc  denotes the specific heat of the solid phase and fL  is the latent heat of fusion. 

Also the temperature in the solid region is determined from 

 

)(
)(

η
γ

erf
erf

TT
TT Wf

W

−
+=                                    (4.24) 

 

where 
t

x

sα
η

2
= .  

In order to model this one-dimensional problem using the two-dimensional code, the top 

and bottom of the slab are assumed to be insulated since any horizontal line can be 

regarded as a line of symmetry in this problem.   

The above problem is studied for a range of Stefan numbers. Other parameters are 

CTW
o0.1−= , CT f

o0.0= , while the thermal diffusivity and specific heats are set equal to 

unity.  Figure 4.8 shows the position of phase-change interface compared to the analytical 

solution for 0.4,1.0,05.0=tS , and 10.0, where ( ) fWfst LTTcS −=  is the Stefan number. 

Temperature distributions at t = 0.14 s are also compared to the analytical solution in Fig. 
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4.9. As can be seen, accurate results are obtained for a range of large and small Stefan 

numbers.  

     For small Stefan numbers, the accuracy was improved by using a slightly different 

method for calculation of first-order derivatives. The CE/SE method, in its present form, 

loses its second-order accuracy and becomes dissipative for 1<tS . The dissipation, 

however, is adjustable by the changing the parameter α~ , as mentioned in Section 4.1.1. 

Accurate results for ,05.0=TS and 0.1 are obtained using 1~ <α . It is possible, however, to 

design a CE/SE scheme in a way that the above adjustment occurs automatically and the 

method becomes insensitive to the size of Stefan number. Chapter 7 is a detailed study of 

this subject.  

 

4.2.4 Heat Conduction with Freezing in a Corner    

The problem under consideration here is the phase change of a liquid contained in an 

infinite corner (Fig. 4.10). The liquid has a uniform temperature fL TT ≥  and for time 

0≥t , the surfaces 0=x  and 0=y  are maintained at a constant temperature fW TT < .  

     The analytical solution of this problem, which is of similarity nature, is discussed in 

detail in [93]. Briefly, the non-dimensional interface position, )( *xf , can be determined 

from 

 

m

mm
m

x
C

xf
1

*
* )( 





−
+=

λ
λ                                 (4.25) 
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where 
t

x
x

α4
* = , α  is the thermal diffusivity which is assumed to be equal for both solid 

and liquid phases, λ  (asymptote shown in Fig. 4.10) is calculated by solving the following 

equation 

 

βλπ
λ

λ
λ
λ

=
−

−
−

)(
)exp(

)(
)exp( 2*2

erfc
T

erf
i                            (4.26) 

 

where 










−

−
=

Wf

fL

S

L
i TT

TT

k
k

T * , the non-dimensional initial temperature and ( )WfS

f

TTc

L

−
=β , 

the latent to sensible heat ratio are two non-dimensional parameters needed for completely 

defining this problem. Constants C and m in Eq. (4.25) are determined for each case using 

*
iT and β  [93]. The numerical simulation is performed using insulated walls at x = 3.0 and 

0.3=y . Results are shown for 25.0=β  and 3.0* =iT  (which imply that C = 0.159 and m 

= 5.02 [94]). Constant temperature contours, at t = 0.02 seconds, are shown in Fig. 4.11 and 

the non-dimensional interface position is compared to the analytical results in Fig. 4.12. An 

example of the unstructured mesh used for all of the square domain cases is shown in Fig. 

4.13. 
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4.2.5 Inward Freezing in a Circular Pipe     

The inward phase change of a liquid within a cylindrical boundary is important in dealing 

with freezing of water in pipes and allied problems. A number of approximate solutions are 

available for this finite domain problem [92]. As a result of symmetry, only a quarter of a 

circle need be studied; the geometry is given in Fig. 4.14 and an example of the spatial 

mesh is shown in Fig. 4.15. The numerical results are obtained for a quarter circle of unit 

radius with the initial state assumed to be liquid at the fusion temperature. Other parameters 

are CTW
o0.1−= , CT f

o0.0= , and kgJL f 25.0=  while the thermal diffusivity and 

specific heats are set equal to unity. The position of the phase change interface at different 

times is shown in Fig. 4.16, these graphs are generated using enthalpy contours that range 

from SfH  to LfH . The enthalpy distribution in the circle is given in Fig. 4.17 for an 

intermediate time of t = 0.11 s. The total freezing time (tf) is determined to be between 0.18 

s and 0.19 s, which is in agreement with the approximate solution given in [92]. This 

approximate solution may be expressed as    

8
1

4
1

2 +=
t

f

SR
tα

                                          (4.27) 

 

where R is the radius of the circle, α  denotes the diffusivity. This approximate relation, for 

this case, gives a total freezing time of ft = 0.1875 s.    
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(a) 

 

(b) 

Figure 4.1: Computational molecule of CE/SE method, (a) 
CEs and (b) SEs 



 

 

103 

 

Ghost Cell

Boundary
Cell

Boundary

Sg

Sj

Y

X

B

 
 

Figure 4.2: Boundary and ghost cells. 
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Figure 4.3: Bounded growth of errors (Zone 2) 
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Figure 4.4: Vanishing errors (zone 3) 
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Figure 4.5: The grid-dependent truncation error. 
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Figure 4.6: Demonstration of two-dimensional CE/SE 
scheme’s second-order accuracy 

 

               
 

Figure 4.7: Geometry of the freezing slab case 
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Figure 4.8: Location of the interface for the freezing slab case 
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Figure 4.9: Temperature distribution at t = 0.14 for the 
freezing slab case 
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Figure 4.10: Geometry for the freezing corner case 
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Figure 4.11: Temperature isotherms at t = 0.02 s, for the 
freezing corner case 
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Figure 4.12: Non-dimensional interface for the freeing corner 
case 
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Figure 4.13: An example of the grid within a square   
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Figure 4.14: Geometry of the inward freezing pipe case 
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Figure 4.15: An example mesh for the inward freezing pipe case 
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Figure 4.16: The interface position for the inward freezing pipe case 
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Figure 4.17: Enthalpy contours at t = 0.11 s for the inward freezing pipe case 
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Chapter 5  

AXISYMMETRIC CE/SE PHASE-CHANGE 

SCHEME 

Many three-dimensional problems can be modeled as axisymmetric. Therefore, 

having an axisymmetric version of the solver can save a great amount of time and 

computational power while treating those problems.  

In this chapter the development of an axisymmetric CE/SE phase change solver 

is undertaken. It explores axisymmetric formulation options and determines which 

option leads to a stable efficient solver. In addition to the derivation, several 

numerical validations are also presented to demonstrate convergence and accuracy 

of the axisymmetric scheme. The boundary conditions are also extended to include 

the convective boundary condition and its numerical implementation.   

 

5.1 Development of an Axisymmetric CE/SE Scheme for 

Heat Conduction with Melting/Freezing 

The axisymmetric version of the governing equation (Eq.(2.3)), can be written as 
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Equation (2.6) can be used without change. 

Consider the following PDE which can represent a variety of conservation laws 

depending upon the definition of H and the flux functions F and G 

 

0
21

=
∂
∂

+
∂
∂

+
∂

∂
x
G

x
F

t
H

                                       (5.2) 

 

where x1 and x2 are coordinates of a two-dimensional Cartesian system. As a special 

case note that the two-dimensional Cartesian version of Eq. (2.3), in the xy-plane, 

can be written in the above form defining for example 

 

y
T

kG
x
T

kF
∂
∂

−=
∂
∂

−= ,                                    (5.3) 

 

The CE/SE method applied to the above case was studied in the previous chapter, 

and its accuracy and efficiency were assessed.  

The axisymmetric governing equation, (Eq. (5.1)), can also be written in the 

form of Eq. (5.2) by letting x1 = r and x2 =  z represent the radial and axial 

coordinates, respectively, and writing Eq. (5.1) in its conservation form 
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The CE/SE formulation, presented in the previous chapter, would be therefore 

directly applicable.  However, after writing the code it was observed that the above 

formulation does not lead to a stable numerical method for axisymmetric cases. An 

explanation for this phenomenon follows.  

Although Eq.(5.2) can be used as a general form for describing many physical 

phenomena, the properties of the resulting numerical schemes may be very different 

depending on each individual PDE. Further, even for different formulations of a 

single PDE, the resulting numerical schemes may vary in performance, 

dissipative/dispersive behavior, and stability range, depending on the specific forms 

of the functions H, F, and G for each individual formulation. Some formulations, 

such as Eq. (5.4), may render unconditionally unstable schemes. Therefore, in 

search of a stable, (or marginally stable), axisymmetric scheme, an alternative 

approach is used in which the 
r
T

r ∂
∂1

 term in Eq. (5.1) is treated as a source term, 

i.e., 
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Or, in a general form similar to that in Eq. (5.2) 
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                                      (5.6) 

 

where 
r
T

r
k

S
∂
∂

=
~

 represents the source term, and the flux functions F and G are 

defined as 
r
T

kF
∂
∂

−=  and 
z
T

kG
∂
∂

−= . 

Considering ),,( tzr  as coordinates of a three-dimensional Euclidean space-time, 

Eq. (5.6) can be written as   

 

),,(,~ HGFUSU ==•∇
rrr

                                (5.7) 

 

A two-dimensional, unstructured, space-time mesh is used here which consists of 

Delaunay triangulation on the rz-plane that, considering the time axis as the third 

dimension, makes prisms perpendicular to the rz-plane. Axisymmetric CE’s and 

SE’s are defined in an analogous manner to the two-dimensional case. The integral 

conservation law will then be 

 

VdSdsnU
CEVCES
∫∫ =•

)()(

~ˆ
r

                                       (5.8) 

 

where S(CE) denotes the boundary of the conservation element while 

( )( )tzr nnnn ,,ˆ =  and ds, respectively, denote the unit outward normal vector and the 
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area of a surface element on S(CE). In order to perform the above surface 

integrations related to the left hand side of the above equation can be calculated as 

in the two-dimensional case, as explained in the previous chapter. For calculating 

the right hand side of Eq. (5.8), S
~

 is approximated as follows 
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                (5.9) 

 

By replacing (x, y) in Fig. 4.1 with (r, z), its axisymmetric counterpart results, in 

which,  )(CEV can be written as 

 

∑
=

=
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)()(
k

kVCEV                                         (5.10) 

 

where  

 

( )2)()( tSV kk ∆=                                        (5.11) 

 

Therefore, the right hand side integral of Eq. (5.8), can be calculated as follows 
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Quantities 21~ −n
jk

S , ( ) 21~ −n

jr k
S , ( ) 21~ −n

jz k
S , and ( ) 21~ −n

jt k
S  are saved at the solution point of 

cell kj , and are considered constant on the corresponding solution element. Using a 

definition analogous to that of Eq. (5.9), the above volume integral can also be 

written as  
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Equation (5.8), after substitution of the evaluated integrals, provides an expression 

for n
jH . The expression contains three unknowns ( ) n

jr
n
j HH , , and ( ) n

jzH , but 

examination of the expressions which contain ( ) n
jrH  and ( ) n

jzH  suggests that they 

may be eliminated, resulting in an explicit method, provided the solution point is 

chosen at the centroid of the hexagon 1C 3V 2C 1V 3C 2V  formed by the vertices of 

cell j and the centroids of its three neighbors. Following this approach, the equation 
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for n
jH  can be written in a convenient manner. Note that despite the apparent 

complexity, the equation for n
jH  is in fact composed of three similar parts, each 

related to one of the neighboring cells. 
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and ),( klI  is calculated from 
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Determination of the first and second-order derivatives is performed just as in those 

of the two-dimensional Cartesian case.  
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5.1.1. Convective Boundary Conditions 

In addition to the boundary conditions explained in Chapter 4, here the boundary 

condition of the third kind, i.e.,  convection boundary condition, is also used:  

Assuming a film coefficient, h, at an ambient temperature of ∞T , this boundary 

condition can be written as 

 

( )BB TkTTh σ∂∂−=− ∞ )(                                (5.17) 

 

where σ  is the outward normal direction to the boundary. Central differences can 

then be easily used to extract an expression for gT , using BT  from the Eq. (5.17). 

 

5.2 Numerical Results and Discussion 

To assess the validity and accuracy of the axisymmetric CE/SE formulation, the 

following problems were designed and applied to a unit cylindrical geometry, using 

a fictitious material with unit conductivity.  

 

Case 1.      TH =  and zT =                                                                        (5.18)                        

Case 2.      TH =  and 223 22 zrtT ++=                                          (5.19) 
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As can be seen, the above temperature distributions satisfy the axisymmetric 

governing equation (Eq. (5.1)). The following, contains the details of the above 

cases, along with several other axisymmetric phase change cases. 

 

5.2.1. Case 1: Time-Step Effects 

This case is a steady linear problem, for which it can be easily shown that the 

CE/SE formulation is exact, in the sense that no truncation error exists. Therefore, 

the spatial grid is not an issue in this case. On the other hand, the time-step issue 

needs to be studied. Equation (5.18) was applied on the boundaries, with an initially 

imposed error distribution over the entire domain. The results obtained confirmed 

that, after a period of time, the temperature converges to the accurate distribution 

everywhere in the field.  Figure 5.1 shows the absolute error (which is defined as 

the infinity norm of the difference between the numerical and exact solutions) 

versus the iterations for different time steps. The errors are seen to vanish to the 

order of machine zero. 

Using this case, the error behavior was studied, for different time-steps. Since 

the present method is explicit, there are stability restrictions on the time-step. The 

error behavior for the axisymmetric case was observed to be similar to that obtained 

for the two-dimensional analysis, which was discussed in detail in Chapter 4.   
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5.2.2. Case 2: Spatial Grid Size Effects 

For this transient problem (see Eq. (5.19)), unlike the previous case, there is a 

truncation error associated with second-order accuracy of the CE/SE method. 

Clearly, this error should decrease by using finer spatial grids. Figure 5.2 was 

generated using two spatial grids. A grid that has 1,700 cells will be referred to as 

the coarse grid, while the so-called fine grid consists of 3,964 cells. Equation (5.19) 

was then applied on the boundaries. Both the exact solution and a uniform error 

distribution were used as initial conditions. The absolute average errors (defined as 

the arithmetic average of the absolute value of the difference between the numerical 

and exact solutions, over the entire domain) are shown in Fig. 5.2. This figure 

confirms that refining the grid reduces the size of the truncation error. As 

mentioned in the previous chapter, the rate of this decrease is related to the actual 

order of accuracy of the numerical scheme. Therefore, using a number of different 

spatial grid increments, we can numerically demonstrate that the method is second-

order. In Fig. 5.3, the average absolute errors are plotted versus the spatial grid 

spacing. Examining the slope of this log-log plot, the second-order accuracy is also 

confirmed for the axisymmetric scheme. 

 

5.2.3. Cases of the Thawing Cone 

Thawing of a cone, with a cone half angle of 30 degrees, was studied using the 

axisymmetric scheme. All cases start from a frozen initial state at the fusion 
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temperature with different boundary conditions. An example mesh for all conical 

cases is given in Fig. 5.4. For these cases, the position of the phase change interface 

at different times is shown in Figs. 5.5, 5.6, and 5.7. Figures 5.5 and 5.7 are 

generated using constant enthalpy contours that range from enthalpy of the fusion 

solid, SfH , to that of the fusion liquid, LfH . For all of the cases studied, Lf = 0.25 J 

/ kg, Tf  = 0.0 Co  and the thermal diffusivity and specific heats are set equal to 

unity.  

The cases are: 

 

1) Insulated sides, constant temperature on the base. The results are shown on the 

right half of Fig. 5.5 for CTBase
o3.0= .  

 

2) Insulated sides, boundary condition of the third kind on the base. The results are 

shown on the left half of Fig. 5.5 for CT o3.0=∞ , and a film coefficient 

Km
Wh

⋅
= 210  on the base. As can be seen, the convection resistance creates a 

delay in thawing, depending on the magnitude of the film coefficient. As the film 

coefficient is enlarged, the expectation is for the so-called delay to vanish. The 

results should then converge to the constant temperature results. This experiment 

was conducted numerically and the expected results were obtained. Figure 5.6 

shows this process by comparing the position of phase change interface, on the 

axis of symmetry, versus time for different film coefficients. 
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3) Constant temperature boundary condition, with CT o3.0= , on all outer 

surfaces of the cone. The phase change interface at different times is given in Fig. 

5.7. 

 

The results discussed in this chapter offer, in addition to an axisymmetric CE/SE 

phase change solver, a confirmation of the robustness of the numerical approach 

adopted.  
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Figure 5.1: Vanishing errors for case 1 
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Figure 5.2: Grid size effects for case 2 
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Figure 5.3: Demonstration of the axisymmetric 

CE/SE scheme’s second-order accuracy 
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Figure 5.4: An example of the grid for conical cases 
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Figure 5.5: Position of the interface at different 
times, using enthalpy contours. 
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Figure 5.6: Position of the phase change interface on the axis 

of symmetry for the thawing cone case 2 
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Figure 5.7: Interface position for the thawing cone case 3 
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Chapter 6  

THREE-DIMENSIONAL CE/SE PHASE-CHANGE 

SCHEME 

This chapter concerns the development of a three-dimensional CE/SE phase change solver. 

It contains a detailed derivation of the four-dimensional space-time scheme needed for 

solving phase change problems in three spatial dimensions. As presented in the previous 

chapters, the convergence and accuracy of the three-dimensional scheme is also assessed 

numerically, by comparing the results to the available analytical and semi-analytical 

solutions for specific benchmark problems. 

 

6.1 Development of a Three-Dimensional CE/SE Scheme for 

Heat Conduction with Melting/Freezing 

In three spatial dimensions, Eq. (2.3) becomes 
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Equation (2.6) can be used without change. Define vector U
r

 as  

 

),,,( HPGFU =
r

                                            (6.2) 

 

where  

y
T

kG
x
T

kF
∂
∂

−=
∂
∂

−= , , 
z
TkP

∂
∂−=                              (6.3) 

 

and H is the enthalpy per unit volume. 

Considering (x, y, z, t) as coordinates of a four-dimensional Euclidean space-time, Eq. 

(4.4) will still be valid. The spatial projection of the unstructured grid used here consists of 

tetrahedral elements. To provide a clear geometric description of the CE, an analogy with 

the two-dimensional formulation is helpful. As described in previous sections, the 

integrations involved in the two-dimensional case are performed on the CE’s top, bottom 

and lateral faces that are two-dimensional surfaces. Similarly, the integrations for the three-

dimensional case are performed on the CE’s top, bottom and lateral ‘faces’ that are three-

dimensional volumes. 

 

6.1.1. Top/Bottom Faces 

These faces are constant-time faces. Consider a tetrahedral element ‘cell j’ at time level 

21−n , e. g., the tetrahedron V1V2V3V4 depicted in Fig. 6.1. Let nodes V1, V2, V3, and V4 

represent vertices of cell j while its four neighboring cells are referred to as cells j1, j2, j3, 
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and j4. The neighbors are named in a way that any vertex Vk, k = 1, 2, 3, and 4, of cell j 

faces the side shared by cell j and its neighbor jk. Further, let point C denote the centroid of 

cell j while Ck represents the centroid of the neighboring cell jk. The three-dimensional 

analogue of the hexagon V1C2V3C1V2C3 of Fig. 4.1(a) can be visualized as follows. For 

each face of tetrahedral cell j, a hexahedron can be constructed using vertices of that face, 

the centroid of cell j, and the centroid of the corresponding neighbor. These hexahedra, i.e., 

CV2V3V4C1, CV1V3V4C2, CV1V2V4C3, and CV1V2V3C4, are three-dimensional analogues of 

the two-dimensional bottom faces CV2V3C1, CV3V1C2, and CV1V2C3 depicted in Fig. 4.1(a). 

The hexahedron related to neighbor j1, i.e., CV2V3 V4C1, is depicted in Fig. 6.1. The union 

of these 4 hexahedra is a polyhedron with 12 triangular faces. The centroid of this 

polyhedron is the solution point of cell j, and its spatial coordinates will be referred to as 
jx′ , 

jy′ , and 
jz′ . This polyhedron is the three-dimensional analogue of the bottom face of the 

hexagonal prism depicted in Fig. 4.1(a). A similar polyhedron represents the top face of the 

three-dimensional case’s CE.  

Adopting a notation convention similar to that introduced in [65], the volume of each of 

the four hexahedra introduced above will be referred to as  V (k), k = 1, 2, 3, and 4 where V 

(k) is volume of the hexahedron related to neighbor jk. Further, let coordinates of the 

centroid of the hexahedra be represented by )(k
cx , )( k

cy , and )( k
cz  where k = 1, 2, 3, and 4. 

The unit outward normals for top and bottom faces are (0, 0, 0, 1) and (0, 0, 0, -1), 

respectively.  
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6.1.2. Lateral Faces  

These faces simply connect the top and bottom faces in the 4th dimension. Therefore, there 

are 3 lateral ‘faces’ (which are in fact three-dimensional volumes) associated with each 

neighbor. To visualize these faces, note that 3 lateral faces associated with neighbor j1 are 

volumes C1V2V3 321 VVC ′′′ , C1V3V4 431 VVC ′′′ , and C1V2V4 421 VVC ′′′  where the primed nodes refer 

to the same spatial position as the corresponding unprimed nodes, but at the new time level, 

n. The volume of these lateral faces will be referred to as ),( klV  where l = 1, 2, 3, and k = 1, 

2, 3, 4 refers to the associated neighbor. The centroid of each lateral face is represented by 

the space-time point )4,,,( ),(),(),( ttzyx nkl
c

kl
c

kl
c ∆− . The unit outward normal of each lateral 

face is represented by )0,ˆ,ˆ,ˆ(ˆ ),(),(),(),( kl
z

kl
y

kl
x

kl nnnn = . These unit normals are defined outward 

with respect to the hexahedra introduced in the previous section.  

Analogous to the two-dimensional case, each lateral face represented by ),( klV , as well 

as each bottom face represented by V(k), is associated with SE ( )21, −njk
, k = 1, 2, 3, 4. 

The top face is associated with SE (j, n). Using the three-dimensional analogue of Eq. (4.5), 

i.e., 
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where n
jΨ , ( )n

jxΨ , ( )n

jyΨ , ( )n
jzΨ , and ( )n

jtΨ  are constant coefficients associated with the 

solution point ( )n
jjj tzyx ,,, ′′′ , and Ψ can be any of the components of U

r
. With integrations 

similar to the two-dimensional case, the three-dimensional analogue of Eq. (4.13) becomes   
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6.1.3. First-Order Derivatives 

Using an approach similar to the two-dimensional case, the process of determining the 

first–order derivatives of the field parameters can be summarized in solving the following 4 

linear systems, each having 3 equations and 3 unknowns.    
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The above systems can be solved for )(k
xΨ , )(k

yΨ and )(k
zΨ , where k = 1, 2, 3, and 4. A 

weighted average may then be used to calculate ( ) n
jxΨ , ( ) n

jyΨ  and ( ) n
jzΨ  as follows 
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where 

( ) ( ) ( ) 4,3,2,1,
2)(2)(2)( =Ψ+Ψ+Ψ= kk

z
k

y
k

xkθ                      (6.12) 

 

and, for any given integer, k = 1, 2, 3, 4, }4,3,2,1{},,{}{ =∪ rqmk . The subscript w in Eq. 

(6.11) can be x, y, or z while parameter Ψ  represents either H or T. The constant α~  is 

usually set equal to 1. Note that, to avoid dividing by zero, in practice a small positive 

number such as 10-20 is added to the above denominators.  
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6.1.4. Second-Order Derivatives 

Using an approach similar to the two-dimensional case, the process of determining the 

second-order derivatives can be summarized in solving the following 3 linear systems, each 

having 4 equations and 4 unknowns.    
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These may be solved simultaneously for second-order derivatives of temperature, i.e., 

( )n

jxwT , ( ) n

jywT , ( ) n

jzwT  and ( ) n

jtwT  where subscript w can be x, y, or z. Using this technique, the 

mesh values of second-order derivatives of T can be evaluated and used in the solution 

procedure which is similar to that of the two-dimensional case.  

 

6.1.5. Boundary Conditions 

In order to treat the boundary conditions, a ghost cell is defined for each boundary cell. 

Geometrically, the ghost cell is the mirror image of the corresponding boundary cell with 

respect to the boundary. The three-dimensional case’s reflecting boundary conditions are 

derived using a technique similar to that described in [87] for the two-dimensional case. As 

explained in section 4.1.3 and, in more detail in [87], reflecting boundary conditions can be 

easily defined in a boundary fitted coordinate system. However, a transformation (of a 

rotation nature) is then needed in order to describe the boundary conditions back in the 

original coordinate system of the problem. Appendix A is devoted to derivation of this 
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transformation matrix for an arbitrarily oriented insulated boundary, for a general three-

dimensional problem. 

Other, phase-change related details of both constant temperature and convective 

boundary conditions are as described in the previous chapters.   

 

6.2 Numerical Results and Discussion  

In order to validate the computer program for three-dimensional cases, and study the error 

behavior of the numerical scheme, the following two cases were designed and applied to a 

unit cube, for a fictitious material with unit conductivity. 

 

Case 1.                           TH =  and .constzyxT +++=                                (6.14) 

 

Case 2.                           TH =  and tzyxT 6222 +++=                                (6.15) 

 

As can be seen, the above temperature distributions satisfy the governing equation, 

Eq.(6.1). The following sections contain the details of the above cases, along with several 

other phase change problems. 

Before starting the case studies, it is of va lue to mention the grid generation method that 

was applied. The unstructured grids used here, are generated employing the following three 

grid generators: 
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1) A regular tetrahedral grid generator, which uses cubic building blocks (each divided 

into a number of tetrahedra) and assembles them to construct the domain of interest, 

(see Appendix B for geometric details of these blocks),   

2) An advancing front tetrahedral Delaunay grid generator [95], 

3) A commercial grid generation code (GAMBIT).  

 

6.2.1. Case 1: A Steady Linear Problem 

This case is a steady first-order problem, for which it can be easily shown that the CE/SE 

formulation is exact, in the sense that no truncation error exists. Therefore, the spatial grid 

is not an issue in this case. On the other hand, the time-step issue needs to be studied. 

Equation (6.14) was applied on the boundaries, with an initially imposed error distribution 

over the entire domain. The results confirmed that, after a period of time, the temperature 

converges to the accurate distribution everywhere in the field.  Figure 6.2 shows the 

absolute error (which is defined as the infinity norm of the difference between the 

numerical and exact solutions) versus the iterations for different time steps. As may be 

observed the errors vanish to the order of machine zero. 

Using this case, the error behavior was studied, for different time-steps. Since the 

present method is explicit, there are stability restrictions on the time-step. The error 

behavior for the three-dimensional case was observed to be similar to that obtained for the 

two-dimensional analysis, discussed in detail in Chapter 4.   
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6.2.2. Case 2: A Problem with Time-Dependent Boundary Conditions 

For this transient problem (see Eq. (6.15)), unlike the previous case, there is a mesh-

dependent error associated with second-order accuracy of the CE/SE method. Clearly, this 

error should decrease by using finer spatial grids. Different spatial grids were used for this 

case. A grid that has 9 nodes on each edge of the unit cube will be referred to as the coarse 

grid, while the so-called medium grid consists of 21 nodes on each edge of the unit cube. 

The grid referred to as fine grid contains 31 nodes on each edge of the unit cube. Equation 

(6.15) was applied on the boundaries. Both exact solution and a uniform error distribution 

were used as initial conditions. The absolute average errors (defined as the arithmetic 

average of the absolute value of the difference between the numerical and exact solutions, 

over the entire domain) are shown in Fig. 6.3.  

In Fig. 6.4, the absolute average errors are plotted versus the spatial mesh spacing for 

different grids. This figure presents a visual demonstration of the second-order accuracy of 

the three-dimensional scheme. 

 

6.2.3. Case 3: Freezing of a Finite Slab 

Consider the freezing slab problem discussed in Chapter 4. In order to model this one-

dimensional problem using the three-dimensional code, all sides of the unit cube are 

assumed to be insulated, except one side, (plane y = 0), which acts like the x = 0 wall of the 

problem stated in Chapter 4. 



 

 

137 

 

This problem is studied for 4=tS  where ( ) fWfst LTTcS −= is the Stefan number. 

Other parameters are CTW
o0.1−= , CT f

o0.0= , while the thermal diffusivity and specific 

heats are set equal to unity.  An example of the spatial mesh for the unit cube is given in 

Fig. 6.5. Figure 6.6 shows the position of the phase-change interface compared to the 

analytical solution versus time. The temperature distribution in the y direction at time t = 

0.14 s are compared to the analytical solution in Fig. 6.7. No changes occur in either x or z 

directions. As can be seen, accurate results are obtained.  

This case is also solved using another commonly used fixed domain scheme from [86]. 

This method (usually called the source based method), is constructed based on an 

alternation of the enthalpy formulation. The basis of the method can be described in simple 

terms as follows. Assume, (for a constant density), that the enthalpy per unit volume, H, is 

a function of both temperature and the liquid fraction, i.e., ),( φTHH ≡  instead of 

temperature only [96]. The chain rule can then be used to get     

 

t
H

t
T

T
H

t
H

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂

∂ φ
φ

                                 (6.16) 

 

where c
T
H

≡
∂
∂

ρ
1

 can be regarded as the specific heat of the material, and fL
H

≡
∂
∂

φρ
1

 as 

the latent heat of phase transformation. Then by substituting Eq. (6.16) into Eq. (6.1), a 

new formulation results as follows 
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This formulation is called source based because the term involving the time derivative 

of the liquid fraction, is usually treated as a source term. Although the above formulation is 

written conveniently in terms of the temperature, there is a drawback associated with it: the 

liquid fraction is also unknown along with the temperature. Therefore iterative corrections 

are needed in order to resolve both temperature and the liquid fraction fields. The above 

formulation is numerically treated in [86], using an implicit finite difference scheme with 

iterations in each step for correcting the liquid fraction filed. This method is applied to the 

same freezing slab problem in order to compare the error distributions.   

The error percentages within the domain are depicted in Fig. 6.8, for both the CE/SE 

method and the method of [86], using an identical time step and identical spatial grid 

spacing. As can be seen, the error associated with the CE/SE method is more uniform over 

the domain, compared with the method of [86]. The mean values and standard deviations 

associated with Fig. 6.8, are given in Table 6.1. 

 

 CE/SE Method of [86] 

Mean Error (%) 0.000836 0.001275 

Standard Deviation 0.000521 0.001227 

     

Table 6.1: Statistical parameters associated with Fig. 6.8 
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6.2.4. Case 4: Thawing of a Cube 

Consider a unit cube that is initially frozen at the fusion temperature 
fT . At time t = 0, the 

temperature of all outer surfaces is raised to TW and held there. This case is studied for St = 

4, CTW
o0.1= , and CT f

o0.0= , while the thermal diffusivity and specific heats are set equal 

to unity.  Figure 6.9(a) shows the frozen core of the cube at different times. These graphs 

are generated using a shaded view of the frozen cells in the mesh.  Figure 6.9(b) shows the  

xy-view of the phase-change interface location at different times. The plots are generated 

using constant enthalpy contours ranging from Hsf to HLf. The top graph also contains the 

xy-view of the spatial mesh, from which the interface width is observed to be roughly equal 

to the size of one cell. This demonstrates the ability of the CE/SE method for capturing the 

discontinuities sharply. 

 

6.2.5. Case 5: Thawing of an ellipsoid 

Consider a prolate ellipsoid that is initially frozen at the fusion temperature fT . At time 

0=t , the temperature of its outer surface is raised to TW and held there. This case is studied 

for St = 1, CTW
o0.1= , and CT f

o0.0= , while the thermal diffusivity and specific heats 

are set equal to unity. The geometry has a half major axis equal to 0.4 m and a half minor 

axis of 0.25 m. The frozen core is shown in Fig. 6.10(a) at different times. The top graph 

shows both the spatial mesh and the initial frozen ellipsoid.  
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By reducing the eccentricity of the original ellipse, the above case approaches the case 

of a thawing sphere, for which, approximations for the total melting time are available in 

[27]. It is worthwhile, therefore, to also study this limiting case of a thawing sphere.       

 

6.2.6. Case 6: Thawing of a sphere 

Consider a sphere that is initially frozen at the fusion temperature fT . At time 0=t , the 

temperature of its outer surface is raised to TW and held there. This case is studied for St = 

1, 2, 3, and 4. The thermal diffusivity and specific heats are set equal to unity while 

CTW
o0.1= , and CT f

o0.0= . The radius of the sphere is taken to be 0.25 m. The frozen 

core is represented in Fig. 6.10(b) at different times, for a case where   St = 4. The top graph 

shows both the spatial mesh and the initial frozen sphere. The total melting times, as shown 

in Fig. 6.11, agree with the results from [27]. However, for the freezing slab case, the error 

associated with the approximate relations given in [27], is reported to be 5%, while the 

comparison of CE/SE results with the exact solution of that case shows a maximum error of 

about 1%. A similar relation between the errors can then be expected for the case of the 

thawing sphere.   

 

In conclusion, this chapter offered the derivation and performance study of a three-

dimensional CE/SE phase change solver. Specifically in comparison to another second 

order fixed-domain method, (see section 6.2.3 and Fig. 6.8), on the same grid, the CE/SE 
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results are slightly more accurate and provide a more uniform error distribution over the 

domain.  

One noteworthy observation regarding the three-dimensional code, concerns its 

increased sensitivity to irregularities in the spatial grid, compared to the two-dimensional 

and axisymmetric versions. It is therefore imperative to keep the sliver element in the 

spatial grid to a minimum. This increased sensitivity is common among numerical 

schemes. An explanation for this behavior involves the error accumulation due to the 

increased number of calculations in a three-dimensional code, compared to the lower 

dimension versions.  

In the next chapter, we will return to the one-dimensional version of the solver, 

developed in Chapter 3. We will study its dissipative/dispersive behavior in detail and offer 

a modification to it, regarding the limit of small Stefan numbers.  
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Figure 6.1: Geometry for 3D formulation 

 
 

Figure 6.2: Vanishing errors for case 1 
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Figure 6.3: Grid size effects for case 2 

 
 

Figure 6.4: Demonstration of the CE/SE scheme’s second-order accuracy
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Figure 6.5: Spatial grid for the unit cube 

 
 

Figure 6.6: Location of the phase change interface for case 3 
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Figure 6.7: Temperature distribution at t = 0.14 s for case 3 

 
 

Figure 6.8: Comparison of the errors at t = 0.14 s for case 3 
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(a)                                          (b) 
 

Figure 6.9: The thawing cube, (case 4), at t = 0.005, 0.02, and 0.05 s



 

 

147 

 

 

(a)   (b) 
 

Figure 6.10: (a) Thawing ellipsoid, (case 5), at t = 0, 0.0035, 
and 0.0085 s; (b) Thawing sphere, (case 6), at t = 0, 0.0025, and 

0.0065 s 
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Figure 6.11: Total melting time for the thawing sphere of case 
6 

4 a 

 
 
 
 
 
 
 



 

 

149 
 

Chapter 7  

THE STEFAN-NUMBER INSENSITIVE CE/SE 

PHASE-CHANGE SCHEME 

The space-time CE/SE method was applied in the previous chapters to heat conduction 

problems with isothermal phase change, for one-dimensional, two-dimensional, 

axisymmetric and three-dimensional geometries. The results for several cases were 

compared to available analytical and semi-analytical solutions. The method’s convergence 

and error behavior were also studied and it was found to be effective and accurate for these 

applications. No non-physical oscillations in the phase change interface were detected. 

Therefore, the SE/CE scheme was recognized as being able to resolve one of the 

weaknesses mentioned for the numerical simulations of the enthalpy method.  

This chapter addresses the second difficulty associated with the enthalpy method, i.e. the 

limit of small Stefan numbers. It was shown, in Chapter 4, that numerical simulation of the 

Stefan problem using the CE/SE method is capable of providing accurate results for both 

large and small Stefan numbers. However, for small Stefan numbers, the accuracy had to 

be improved by using an alternate method for calculation of the first-order derivative terms. 
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The original CE/SE phase change scheme, like other numerical schemes for the enthalpy 

method, loses its accuracy and becomes dissipative for small Stefan numbers. The 

dissipation, nevertheless, is adjustable. The adjustment, that was employed in order to 

obtain accurate results for small Stefan numbers, is an ad hoc feature and therefore 

undesirable. Recently, space-time CE/SE methods have been designed for solving fluid 

flow problems without being sensitive to the size of the Courant number ([80], [29]). Using 

an analogous concept, it is possible to design a CE/SE scheme that is, to a considerable 

degree, insensitive to the size of the Stefan number.  

In this chapter, the problem formulation using the enthalpy method and the original 

CE/SE method applied to it, for one-dimensional geometries are summoned from Chapter 

3. The dissipation of the original method is then studied through numerical experiments 

and is found to vary with the Stefan number in a way that the accuracy reduces for small 

Stefan numbers. The new insensitive CE/SE scheme is then described for numerical 

simulation of phase change problems. A single-phase Stefan problem is selected as a 

benchmark problem for comparing the behavior of the original and the new scheme. 

Finally, the convergence and accuracy of the new scheme is assessed without any case-

dependent adjustment.    

 

7.1 The Original One-Dimensional Scheme 

As developed in Chapter 3, the space-time CE/SE phase change scheme can be written as  
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where the second-order derivatives, required for calculation of Ft are determined as 

described in Section 3.1.2. The first-order derivatives are calculated from  
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Note that, to avoid dividing by zero, in practice a small positive number such as 10-20 is 

added to the denominator in Eq. (7.3). The parameter Ψ , in the above relations, can be 

either H or T. The value of α~  is usually set equal to 1. As mentioned in [69], the above 

weighted average provides the necessary numerical damping. In other words, α~  can be 
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regarded as an adjustable dissipation parameter. It was by adjusting this parameter that 

accurate results were obtained for the cases with small Stefan numbers in Chapter 4. The 

ad hoc nature of this feature is undesirable.  The new CE/SE scheme introduced in the 

following sections is designed to overcome this difficulty. Before introducing the new 

scheme, however, it is of value to study the dissipation of the above scheme, and, in 

particular, its variation with the Stefan number.  

 

7.2 The Dissipative / Dispersive Behavior of the Numerical 

Scheme 

Numerical results of Chapter 4 show that, when the Stefan number is small, in order to 

sharply capture the discontinuities, the value of α~ , (see Eq. (7.3)), needs be adjusted. 

Experiments conducted in Chapter 4 also confirmed that the dissipation of the schemes 

reduces by reducing α~ . The dispersive behavior, however, increases by reducing α~ . At 

the limit 0~ =α , the resultant scheme is purely dispersive, if second-order derivatives are 

excluded.  

Since the schemes with 0~ =α  are linear, their behavior can be studied analytically. 

Two versions of the schemes with 0~ =α  were studied in sections 3.3.1 and 3.3.2. Their 

dispersive behavior is manifest in Figs. 3.3-3.8, through the presence of negative 

amplification factors. Figures 3.3-3.5 represent the behavior of the linear scheme without 

second-order derivatives. The pure dispersive behavior is deduced because the 

amplification factor covers the entire range of [-1, 1]. Further, it was shown that reduction 
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of the Stefan number has a destabilizing effect. This destabilization, however, is ,by no 

means, sever enough to stall the program at the limit of small Stefan numbers. Stable 

results can still be easily obtained. Accuracy, on the other hand, is reduced by the 

oscillations that appear close to the discontinuities, and that are caused by the dispersive 

behavior.     

The non- linear schemes, having 1~ =α , do not show the above-mentioned oscillations. 

Their accuracy at the limit of small Stefan numbers, however, is reduced due to another 

factor: increased dissipation. To show this numerically, the original phase change scheme 

of Section 7.1 is applied to the benchmark phase change problem of Section 3.4.2, for 

Stefan numbers ranging from 0.01 to 10. The solution to this problem contains a 

discontinuity in the enthalpy field. A space-time grid was selected which provided stability 

for the range of interest. The width of the discontinuity was then measured. For the selected 

space-time grid, for 10=tS , the discontinuity was captured very sharply, over a length 

slightly larger than the width of one cell. By reducing the Stefan number, the discontinuity 

became smeared. For example, for 01.0=tS , the discontinuity is spread over more than 7 

cells. These results are shown in Fig. 7.1. Two facts can be deduced from this figure:    

• For Stefan numbers close to, and larger than, 1, the dissipation of the method is very 

low. This leads to accurate capturing of moving discontinuities.7  

                                                 
7 There is a dissipation term that automatically acts only in the neighborhood of the discontinuities and serves as a means of suppressing 

non-physical oscillations without affecting the solution at the smooth regions [80].    
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• For smaller Stefan numbers, the method manifests dissipation and the dissipation 

increases by reducing the St. Furthermore, the rate of increase of the dissipation also 

increases by reducing the Stefan number. 

The objective is then to design a CE/SE method which is less sensitive to the value of St 

than the original scheme (with α~ = 1), and which also avoids the dispersive behavior of 

the scheme with α~ = 0.  

 

7.3 A New CE/SE Phase Change Scheme  

Recently a new generation of CE/SE schemes was introduced ([80], [81]). These schemes 

provide, for the Euler equations, CE/SE solvers that are insensitive to the local value of the 

Courant number in the flow field. A new CE/SE phase change scheme may be designed by 

adopting the same concept. The methodology, however, differs in some aspects in order to 

accommodate the physics of phase change problems.       

It is worthwhile to emphasize that the new and the original CE/SE phase change 

schemes differ only in the calculation of the first-order derivatives, namely in Eqs.(7.2-7.4). 

As introduced in [81], define points M+,  M- ,  P+, and P-  as indicated in Fig. 7.2. It is 

through the variable parameter, 10 ≤≤ τ , that the automatic adjustment will occur in the 

new method’s dissipation. Using points P+ and P-  instead of points D and F, respectively, a 

new version of Eqs.(7.2-7.4) can be written as  
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In order to calculate n
P−Ψ and n

P +Ψ , first-order Taylor series are used around the expansion 

points of A and C, respectively. In a similar way to that mentioned in [81] for the advection 

equation, it can be shown that, for τ  = 1, this scheme becomes equivalent to the original 

phase change scheme, i.e., Eqs.(7.2-7.4) with α~ = 1. On the other hand, for τ = 0, it 

becomes equivalent to the scheme composed of Eqs.(7.2-7.4) with α~ = 0, which produces 

undesirable dispersive  behavior. To overcome this problem, another scheme was 

suggested in [81], which was composed by combining the original and the above schemes 

as follows 

 

( ) ( ) ( ) −−++ Ψ+Ψ=Ψ WW
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with ±W from Eq.(7.3) and ( ) n

jx
±Ψ̂ from Eq.(7.7). 
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The parameter 10 ≤≤ τ  needs to be defined in a proper way that accounts for the 

physics involved. Consider the following parameter (in practice, a very small positive 

number is added to the denominator in order to avoid dividing by zero) 

 

n
j

n
j HH

x

2121 −+ −

∆
=ζ                                        (7.9) 

 

The parameter ζ  is related to the inverse of an approximation of the spatial derivative of 

the enthalpy field. By considering a reference state where the value of n
j

n
j HH 2121 −+ −  

equals the value of x∆ , a reference ζ , ( refζ ), can be defined that has the value of 1. This 

reference ζ  can then be used in order to non-dimensionalize ζ  as 

refζ
ζ

ζ =*                                            (7.10) 

 

Dropping the * superscript, the parameter τ  is defined as 
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One feature of the above definition is that the small values of τ  occur closer to the phase 

change interface. Further, the larger the latent heat of fusion of the phase change material, 

the smaller the minimum value of τ  will be. Therefore, for moderate temperature 
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gradients, the largest deviation from the original CE/SE phase change scheme occurs for 

the small Stefan numbers and close to the phase front.  

The scheme based on Eq.(7.8) was programmed using the above definition for τ . 

Although the corresponding Euler scheme was shown to be highly accurate [81], the 

resulting phase change scheme still suffered from unwanted oscillations. Another 

modification was then made in the definition of τ . This time a lower limit was also set for 

it 
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where C1 and C2, are arbitrary parameters to be defined. Numerical experiments were used 

in order to set suitable, case-independent values for these parameters. A highly accurate 

non-oscillatory scheme resulted by setting the values of C1 and C2 in Eq.(7.12) equal to the 

Stefan number itself, i.e., for St<1 
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Therefore, the new CE/SE phase change scheme is constructed using Eq. (7.1) with the 

first-order derivatives calculated from Eq.(7.8), and with τ  calculated from Eqs.(7.9) and 
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(7.10). Note that for 1≥tS , no deviation from the original scheme is needed therefore, 

1=τ . 

In the following section, comparison is made over a range of Stefan numbers, between 

the original CE/SE phase change scheme, the new scheme, and yet another commonly used 

fixed domain scheme adopted from [86]8. The benchmark problem used for these 

comparisons is selected to be a single-phase Stefan problem, for which an analytical 

solution exists [92]. 

 

7.4 Numerical Results and Discussion   

In order to compare the accuracy of the new modified scheme with that of the original 

scheme, a single-phase Stefan problem is used as a benchmark, under the following 

conditions. 

Consider a slab of thickness L = 1 with the initial state assumed to be liquid at the fusion 

temperature Tf. At 0=t , the temperature of the surface at 0=x  drops to TW and is 

maintained at that value. The surface at Lx =  is effectively insulated. The analytical 

solution of this problem, containing the transient temperature distributions and the phase 

front location, was discussed in detail in section 4.2.3. This problem is studied numerically 

for Stefan numbers ranging from 0.01 to 10. The Stefan number is defined as 

( ) fWfst LTTcS −=  where cs denotes the specific heat of the solid and Lf is the latent heat 

of fusion. All cases are modeled using a uniform spatial grid containing 1,100 nodes. Other 

                                                 
8 See section 6.2.3 for a description of this alternative method. 
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parameters are CTW
o0.1−= , CT f

o0.0= , while the thermal diffusivity and specific heats are 

set equal to unity.   

Some of the studied cases are shown in Fig. 7.3-7.6 in order to illustrate the conclusions 

that are drawn. Figures 7.3(a), 7.4(a), 7.5(a), and 7.6(a) demonstrate the temperature 

distribution at t = 0.14 s for various small Stefan numbers. As can be seen, the deviation of 

the results obtained by the original CE/SE phase change scheme, from the analytical 

solution, increases as the Stefan number is reduced. The modified CE/SE phase change 

scheme, however, retains its accuracy at small Stefan numbers. In fact it does not show a 

distinguishable sensitivity to the magnitude of the Stefan number. The same observation 

can be made from Figs. 7.3(b), 7.4(b), 7.5(b), and 7.6(b). These plots represent the 

corresponding enthalpy values. Again it is seen that as Stefan number is reduced, the 

original CE/SE phase change scheme shows a dissipated interface while the modified 

scheme consistently resolves the phase front sharply. Figures 7.3(a) and 7.4(a) also contain 

the results of another commonly used method (from [86]). This third method shows 

behavior similar to the original CE/SE scheme for St = 0.01. However, comparing Figs. 

7.3(a) and 7.4(a), it is observed that by increasing the Stefan number, the error associated 

with the original CE/SE scheme, vanishes at a higher rate compared to that of the method   

of [86]. Furthermore, the original CE/SE phase change scheme consumes less 

computational resources, resulting in a much faster scheme.  

It is also observed that, for these cases, the original and the modified CE/SE schemes are 

both identically accurate for St > 0.5. For St > 1.0, as concluded from the formulations, the 

two schemes become theoretically identical.  
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The evolution of the interface location in time, obtained by the modified scheme, was 

also compared to the analytical solutions, for St = 0.01 and St = 0.05. This comparison is 

shown in Fig.7.7.  

The computational cost imposed on the CE/SE scheme by the modification, although 

significant in one spatial dimension, will not be a factor in two- and three-dimensional 

simulations. This is due to the fact that, while the main body of calculations increases 

significantly by adding more dimensions, the extra computations needed for the 

modification remain of the same order.  

Before concluding this chapter, it is worthwhile to mention that the modified scheme is 

easy to extend to higher dimensions. 
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Figure 7.1: Effect of the Stefan number on the dissipation of 
the original phase change scheme 

 

 

 

 

Figure 7.2: Geometry for the modified scheme  
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(a) 

 
 

(b) 
 

Figure 7.3: Temperature and enthalpy distributions at t = 0.14 
s, for St = 0.01 
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(a) 

 
(b) 

 
Figure 7.4: Temperature and enthalpy distributions at t = 0.14 

s, for St = 0.05 



 

 

164 

 

                                 
(a) 

 
(b) 

 
Figure 7.5: Temperature and enthalpy distributions at t = 0.14 

s, for St = 0.1 



 

 

165 

 

                                 
(a) 

 
(b) 

 
Figure 7.6: Temperature and enthalpy distributions at t = 0.14 

s, for St = 0.5 
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Figure 7.7: Location of the phase interface at different times 
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Chapter 8  

A SPACE-TIME CE/SE NAVIER-STOKES SOLVER 

This chapter provides a starting point for the future work towards construction of a general 

phase change solver based on the previous chapters. In this chapter, the “no convection-no 

density change” assumption made in the physical modeling of the problem is relaxed. A 

full CE/SE Navier-Stokes solver is derived, in which, a new procedure is explored for the 

treatment of the viscous terms. The program is validated for some standard benchmark 

fluid flow problems, and proved accurate and ready to be extended to include phase change 

phenomenon. 

Both natural convection and density change have effects on the shape and speed of the 

phase interface. From a physical standpoint, discussion on the kinematics of the freezing 

and melting with density change is given in [97]. This paper also includes considerations at 

the molecular level. Further, Reference [98] provides a helpful analysis on the scales of 

phase change in the presence of natural convection.  

A front tacking formulation of the solid- liquid phase change, taking into account the 

effects of the convection in the melt is presented in [99]. In this paper, the change of 
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density due to phase transition is neglected. The melt is considered incompressible and the 

natural convection is modeled using the Boussinesq9 approximation. The mushy zone is 

treated as a liquid with very large viscosity. A finite volume method is used; however 

special numerical treatments were necessary to improve the stability.  

Reference [100], presents a finite difference treatment of a one-dimensional phase 

change problem with density change, again formulated using the front tracking approach.  

In this paper, the density of the liquid phase, (modeled as incompressible), is assumed to be 

much greater than that of the solid. A somewhat non-realistic assumption that simplifies the 

problem by selling the velocity of the liquid phase equal to that of the moving interface.  

Reference [101] treats the phase change problem accounting for both density change 

and convection effects. In this paper a front fixing formulation is used for two-dimensional 

geometries. The liquid is, however, assumed incompressible and the effect of convection is 

modeled through the Boussinesq approximation.   

Another paper that also uses a front fixing phase change modeling is [102]. This paper, 

although only applicable for a special one-dimensional case, provides an analytical study 

on the effects of both convection and density change. A literature review on the subject is 

also available in this paper.  

A one-dimensional enthalpy formulation of the phase change problem with density 

change is available in [103]. This paper provides a single-domain formulation in which, the 

solid phase is modeled as a liquid with infinite viscosity. The change of density is modeled, 

                                                 
9 The Boussinesq approximation is based on neglecting the change of density in a fluid, everywhere except in the 

buoyancy term. 
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in this paper, using sources/sinks on the interface. The convection effects, however, are 

neglected using a low gravity assumption.  

There are other references, such as [104], [105], [106], which deal with the effect of 

convection on the solid/liquid phase change phenomenon, neglecting the density change. 

References [104] and [105] also contain some experimental results. Further experimental 

results concerning melting of ice spheres, under forced and mixed convection, are found in 

[107]. Reference [108] provides extensive experimental results of convective solidification 

of gallium, and is considered as a benchmark for validation of numerical results.  

Although we do not intend to provide, here, a thorough literature review on the subject, 

a brief survey reveals that many researchers have addressed the convection effects of the 

phase change problem, without density change. The density change effect, on the other 

hand, has received less attention, mainly due to the complexity of the subject. Very little 

literature is available concerning both effects. In the works that do consider both effects, 

other simplifying assumptions are used, reducing, to some degree, the generality of the 

approach.  

In the search for a more general approach, a recent study, [109], is noteworthy. This 

paper, addresses a general multidimensional liquid-liquid transition of phase. The two 

liquids are considered to have different densities; further, one of the liquids is assumed 

stationary. This paper provides mathematical proof of the existence of a unique solution for 

the above problem, formulated using compressible fluids each expressed by an equation of 

state. Although no numerical implication is provided in this paper, because of its generality, 

this is the approach that we elect to follow here. The objective would then be to build a 
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general solver, based on a single-domain formulation, which expresses both solid and 

liquid phases. The generality of the approach may even allow, through the future work, to 

also add the gas phase to the system. 

The choice of the numerical method is another important issue to address. As mentioned 

above, one difficult aspect of the problem of interest is the natural convection effects. A 

study of the literature on the numerical modeling of natural convection through a full 

Navier-Stokes formulation, (no phase change involved), reveals convergence difficulties 

related to low Mach number stiffness. Most of the compressible solvers used for this 

purpose, need low Mach number preconditioning to overcome this problem, see for 

example [110], [111].    

A feature observed (see [112]) for the space-time CE/SE method, is that the method 

performs well through a wide range of Mach numbers, including low Mach numbers. 

Therefore, it is logical to expect that the CE/SE method could be an effective alternative for 

numerical simulation of natural convection too. If this hypothesis is validated through 

numerical experiments, it could limit the special treatments needed for pre-conditioning 

and stabilizing of present numerical methods used to simulate natural convection.  

Few papers are available on the development of the CE/SE Navier-Stokes schemes. 

These papers, e.g., Refs. [112], [69], [66], [113], differ mainly in the method they use for 

treating the viscous terms. In this chapter, we use an approach for which the theoretical 

basis is discussed in [79]. The CE/SE method of this chapter, also differs from the above-

mentioned references in the fact that, here, the gravity-related body force is treated as a 

source term.  
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The following sections explain in detail the development of this CE/SE Navier-Stokes 

solver, in two spatial dimensions. The three-dimensional extension would be straight 

forward. A standard benchmark problem, i.e., the driven cavity problem, is used to validate 

the computer program. This chapter will not cover validation cases including change of 

phase. The phase change related parameters and related details, however, are included in 

the program. As mentioned before, this chapter serves as a starting point for the 

continuation of the future work related to this research.     

        

8.1 Governing Equations 

As explained in the above introduction, compressible Navier-Stokes equations are used 

with a body force due to the gravity. In two spatial dimensions, these equations can be 

written in conservation form as follows (see, [90])  
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where ρ , u, v, and p represent density, horizontal component of velocity, vertical 

component of velocity, and pressure respectively. Total energy is denoted by E where   

( )22

2
1

vueE ++=                                         (8.2) 

 

and e is the internal energy. Further, the shear stresses are calculated from 

 

( )yxxx vu −= 2
3
2

µτ , ( ) yxxyxy vu τµτ =+= , ( )xyyy uv −= 2
3
2

µτ     (8.3) 

 

where µ  is the viscosity.  

One more equation is needed in order to close the system: an equation of state. For the 

validation purpose, the ideal gas equation of state is used. This equation can be written as 

follows 

 

ep ργ )1( −=                                              (8.4) 

 

where 
v

p

C

C
=γ  is the ratio of specific heats.  
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For the actual phase change cases, however, other equations of state need to be used. A 

useful equation of state, which is also valid for the liquid phase, is called the stiffened gas 

equation of state [114] and can be written as   

 

Bep γργ ~)1~( −−=                                         (8.5) 

 

where γ~  and B are constants, available in the literature, for different materials at different 

ranges of pressure/temperature.  

Note that once the energy field is calculated using the numerical method, the enthalpy 

field will be known. The temperature field can then computed from the enthalpy field, 

using the same procedures that were explained in the previous chapters. The phase change 

effects will, therefore, be accounted for in the Navier-Stokes code. 

  

8.2 A Space-Time CE/SE Navier-Stokes Scheme 

Consider Eq. (8.1). This equation is similar, in the form of representation, to the 

axisymmetric governing equation, i.e., Eq. (5.6). Of course Eq. (5.6) is a scalar equation 

while Eq. (8.1) is a vector equation. Therefore, the vector analogue of the same CE/SE 

procedure used for the axisymmetric case, including treatment of the source term, can be 

employed here. The integral governing equation can then be written analogous to Eq. (5.8). 

The final CE/SE equation, therefore, becomes 
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Note that the notation used above is defined in vector form as 
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where Ψ
r

 can be U
r

, S
~

, F
r

, or G
r

. In the above equation, first-order time and space 

derivatives of the flux functions are needed. As explained in [79], the independent 

parameters needed in this CE/SE formulation are U
r

, xU
r

, and yU
r

. Therefore, using the 

chain rule we have 
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where ψ
r

 is either F
r

 or G
r

, and w can be either x or y. Further, iψ  and iU  refer to 

components of ψ
r

 and U
r

, respective ly. The derivation of the Jacobian components, i.e. 

j

i

U∂
∂ψ

 are given in Appendix C.  

Once 
w

i

∂
∂ψ

, 4,3,2,1=i , is calculated in the above mentioned manner, the time 

derivatives of the flux functions, (needed in Eq. (8.8)), can be computed. To perform this, 

the chain rule is used again 
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 can be computed using the differential form of the conservation law, i.e. Eq. 

(8.1) 
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An important issue to discuss next is the set of boundary conditions. The following 

section summarizes the boundary conditions used in the cases studied in this chapter. 
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8.3 A Note on the Boundary Conditions 

In order to apply the boundary conditions more accurately, in the Navier-Stokes 

application, the ghost cells are defined differently, compared to the previous chapters. 

Consider Fig. 4.2. Let the ghost cell shrink to zero area, in a way that its solution point 

becomes the normal projection of the solution point of the boundary cell on the boundary. 

In this way the no-slip boundary conditions, for the solid wall, are applied exactly on the 

boundary. Since the main benchmark problem that will be studied in this chapter concerns 

a square driven cavity problem, the boundary conditions are explained in reference to that 

case. 

The density boundary condition is assumed soft, i.e., the density of the ghost cell is set 

equal to that of the boundary cell. Further, the equation of state can be used in order to 

relate the energy boundary condition to that of pressure.  

As mentioned previously, the derivatives of vector U
r

, are also considered independent 

variables. Therefore, boundary conditions are needed for the derivatives. Again consider 

Eq. (8.1). The first component of this vector equation, i.e. the continuity equations can be 

helpful in determining some of the derivative boundary conditions. The continuity equation 

is 
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and for a steady state problem, (such as the driven cavity problem), it becomes 
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      ( ) ( ) 0=+++=+ yyxxyx vvuuvu ρρρρρρ                  (8.13) 

 

but the velocity components vanish on the solid boundary, therefore, on a solid wall 

0=+ yx vu                                              (8.14) 

 

Finally, for the square driven cavity problem, consider the horizontal stationary wall. The 

no-slip condition requires the u component of the velocity to vanish along x-axis. This 

implies  

0=xu                                                  (8.15) 

and using Eq. (8.14) 

0=yv                                                  (8.16) 

 

Note that Eqs. (8.15) and (8.16) are also valid for a horizontal moving wall, as long as it 

moves with a constant speed. Further, a similar argument shows that Eqs. (8.15) and (8.16) 

are also valid for stationary vertical walls. These equations lead to two of the momentum-

related derivative boundary conditions, i.e., 
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The other two momentum-related derivative boundary conditions, i.e., those related to 

wall
y

U








∂

∂ 2  and 
wall

x
U









∂

∂ 3  can be considered soft. They can either be assumed equal to 

their counterparts on the boundary cell, or alternatively, they can be calculated based on 

one-sided differences using the values of 2U  and 3U  on the boundary cell.  

The derivative boundary conditions, related to the energy, as well as those related to the 

density, can be considered soft.  

The subject of the boundary conditions, for a Navier-Stokes scheme, still continues to 

attract the attention of researchers. An interesting paper that covers this subject is [115].   

 

8.4 Validation tests 

The simplest validation case for a flow solver could be the case of a uniform flow in an 

unbounded domain with non-reflecting boundaries. Therefore, in this section, we start the 

validation process using this case. Then continue with a more complicated flow benchmark 

problem of the square driven cavity. 

 

8.4.1. The Uniform Flow Cases 

The case of a uniform flow, in an unbounded domain with non-reflecting boundaries, was 

studied using the computer program. The uniform flow of interest was imposed on the 

boundaries of a unit square. Two different flows were used as initial conditions: 1) a 
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uniform flow matching the one imposed on the boundaries, and 2) a uniform flow with a 

different magnitude and flow angle, compared to the one imposed on the boundaries. Using 

the former, the program was able to maintain the solution without change for a large 

number of iterations. Using the latter, the program was able to produce the correct flow. 

The residuals were studied for these two cases and convergence, (to the order of machine 

zero), was verified. 

  

8.4.2. The Driven Cavity Problem 

The problem considered here, belongs to a class of internal flows, usually bounded, of an 

incompressible, viscous, Newtonian fluid in which the motion is generated by a portion of 

the container boundary.  

An interesting reference, [116], contains a thorough discussion on the fluid mechanics of 

the driven cavity. It also offers a section on the importance of the problem and its different 

applications, e.g., in mixing cavities used to synthesize fine polymeric composites. 

As mentioned in [116], the overwhelming importance of these flows is to the basic study 

of fluid mechanics. In no other class of flows are the boundary conditions so unambiguous. 

As a consequence, driven cavity flows offer an ideal framework, in which, meaningful and 

detailed comparisons can be made between results obtained from experiment, theory, and 

computation. In fact, as hundreds of papers attest, the driven cavity problem is one of the 

standards used to test new computational schemes. The most comprehensive comparisons 

between the experimental results obtained in a turbulent flow and the corresponding direct 

numerical simulations (DNS) have been made for a driven cubical cavity. Finally, driven 
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cavity flows exhibit almost all phenomena tha t can possibly occur in incompressible flows: 

eddies, secondary flows, complex three-dimensional patterns, chaotic particle motions, 

instabilities, transition, and turbulence.  

The special case studied here, however, concerns a two-dimensional square cavity, 

assumed to be full with no free surfaces, and gravity is assumed to be unimportant. The 

motion in the cavity is generated by the constant-speed motion of the lid. The geometry of 

this case is depicted in Fig. 8.1.  

As mentioned above, the problem of interest is an incompressible case with no gravity. 

The acceleration of gravity, in the program, can be easily set equal to zero. The presence of 

compressibility in the program, however, complicates the matter. Because of 

compressibility, the problem is no longer defined by the Reynolds number (Re) only. The 

Mach number also needs to be kept small in order to generate results comparable to the 

incompressible benchmarks. Another numerical issue to consider is that the Courant-

Friedrichs-Lewy (CFL) number of the lid must be kept as large as stability allows, for 

accuracy purposes.  

Before defining the specific problem, it is worthwhile to note that, if only the steady 

state, incompressible, driven cavity problem was to be solved, the CE/SE method would 

not be an efficient choice. Usage of the velocity-stream function approach [90], for 

example, would provide results much more efficiently. Once the transient features of 

natural convection and phase change are considered, however, the advantages of the CE/SE 

method become more pronounced.  



 

 

181 

 

The problem studied concerns a unit square cavity, filled with air (treated as an ideal 

gas), for 400Re == ∞

µ
ρ Lu

, where ∞u  is the velocity of the lid, and L denotes the 

dimension of the square cavity. Further, 71.0Pr ==
k

C p µ
, and Mach number of the lid is 

equal to 0.05. A quiescent flow is used as the initial condition.  

A number of unstructured grids were used to model this problem. Grid independence 

can be assumed to be achieved, to an acceptable degree, using a 200 ×  200 spatial grid. 

The streamlines depicted in Fig. 8.2, clearly demonstrate three characteristic vortices of this 

flow. In Table 8.1, the position of the location of the core of each characteristic vortex is 

presented, for each grid. The last column contains Ghia’s results from [46]. As can be seen, 

the bulk flow features are resolved, even on a relatively coarse grid. The details of the 

weakest vortex, i.e., the bottom left vortex, however, are not resolved for grids coarser than 

200 ×  200.  

Figure 8.3 compares the horizontal component of the velocity, on the vertical centerline, 

for different grids, with results from [46]. Similarly, Fig. 8.4 compares the vertical 

component of the velocity, on the horizontal centerline, for different grids, with results 

from [46]. 

Two conclusions can be drawn from these figures: 1) The CE/SE method, on the 200 ×  

200 grid, accurately captures the flow details, and 2) The convergence is non-oscillatory,  

for this Re number. The non-oscillatory convergence means the refinement of the grid  

results in more accurate solutions that  are  obtained  monotonically. This  feature  suggests 
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Vortex 
Core 

(x,y) 

75× 75 

Mesh 

117× 117 

Mesh 

150× 150 

Mesh 

200× 200 

Mesh 
[116] 

x(m) 0.57 0.56 0.56 0.56 0.56 
Primary 

y(m) 0.63 0.61 0.61 0.61 0.61 

x(m) 0.90 0.89 0.89 0.89 0.89 Bottom 

right y(m) 0.10 0.12 0.12 0.12 0.12 

x(m) 0.06 0.05 0.05 0.05 0.05 Bottom 

left y(m) 0.03 0.04 0.04 0.05 0.05 

 

Table 8.1: Location of the core of the vortices, resulting from 
usage of different grid spacing 

that Richardson’s extrapolation can be employed, to provide a more accurate solution, by 

using the results from two coarse grids. An interesting reference on the possibility of the 

oscillatory convergence and its treatment is [117].    

Figure 8.5 displays the residual history for the 150 ×  150 grid. The residuals are defined 

based on the absolute value of the difference between the solutions of two consecutive 

time-steps. This figure, therefore, confirms that a steady state solution is in fact reached.   

Figures 8.6 and 8.7 provide visual demonstrations of the second-order accuracy of the 

method. The error demonstrated in Fig. 8.6 is computed based on the absolute value of the 

difference between the CE/SE method’s results with those of [46], for the horizontal 

component of the velocity at the center of the cavity. The error demonstrated in Fig. 8.7 is 

computed based on the x coordinate of the location of the core of the bottom right vortex. 
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The accuracy of the scheme is assessed based on the above cases. The program also 

contains body force and phase change features that need to be verified using further 

relevant benchmark problems in the future.   
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Figure 8.1: Geometry of the driven cavity 

 
 

Figure 8.2: Streamlines for the 200 ×  200 grid 
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Figure 8.3: Comparison of the horizontal component of the 
velocity, on the vertical centerline, for different grids, with 

results from [46] 
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Figure 8.4: Comparison of the vertical component of the 
velocity, on the horizontal centerline, for different grids, with 

results from [46] 
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Figure 8.5: Convergence history for the 150 ×  150 grid 
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Figure 8.6: Demonstration of the two-dimensional CE/SE 
Navier-Stokes scheme’s second-order accuracy, based on 

velocity of the center of the cavity 
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Figure 8.7: Demonstration of the two-dimensional CE/SE 
Navier-Stokes scheme’s second-order accuracy, based on x 

coordinate of the core of the bottom right vortex 
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CONCLUSIONS 

The numerical simulation of the Enthalpy formulation, for the Stefan problems, is known to 

be limited by two difficulties: 1) non-physical waviness in the temperature distribution, as 

well as unwanted oscillations close to the phase interface, for isothermal phase change, and 

2) convergence and stability problems, as well as inaccuracies due to overwhelming 

dissipation of the numerical schemes, at the limit of small Stefan numbers. 

 

The method of space-time conservation element and solution element is known for its low 

dissipation and dispersion errors, as well as its distinguishingly high capability of 

accurately capturing discontinuities. Therefore, this numerical method, which has been 

mainly applied to fluid flow problems, represents an alternative for numerical modeling of 

moving boundary problems (Stefan problems) such as solid/liquid phase change.  

 

In this dissertation, space-time CE/SE schemes were developed, for the solid/liquid phase 

change problems, in one-, two-, and three- spatial dimensions. A separate formulation was 

also presented for the sub-category of axisymmetric problems.  

 

The equivalence of the CE/SE formulation with the conventional formulation was proven 

mathematically. Each scheme was then validated, numerically, using benchmark problems 
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without and with phase change.  Both analytical and experimental results were used in the 

validation process. The results revealed that using the space-time CE/SE method, the first 

problem associated with the numerical modeling of the enthalpy method is eliminated. No 

non-physical waviness or unwanted oscillation was detected in the results. The second 

problem, however, still existed. Although accurate results were obtained for small Stefan 

numbers using the CE/SE method, a case-dependent adjustment in dissipation was needed. 

This presented the potential for a modification in the original schemes.  

 

An analytical stability study was then conducted on the one-dimensional scheme, using the 

von Neumann stability analysis. This analysis also revealed the dissipative/dispersive 

behavior of the numerical scheme and its variation with the Stefan number. The results of 

this analysis lead to a necessary stability condition, as well as the development of a CE/SE 

scheme that was, to a considerable degree, insensitive to the value of the Stefan number.   

      

In summary, accurate numerical simulation of the enthalpy method, for the solid/liquid 

phase change problems, is possible using the space-time CE/SE method. Further, the 

method can be modified to automatically adjust to the value of the Stefan number. The 

approach, therefore, presents an alternative potentially capable of treating general phase 

change problems. 

 



 

 

FUTURE WORK 

The research presented in this dissertation lays the ground for extensions in several aspects. 

The following presents a list of potential directions to further proceed.  

 

a) Relaxation of the underlying assumptions:  

i. Relaxation of the no-convection in the melt assumption, 

ii. Relaxation of the no-density change assumption,  

iii. Moving towards a more general solver by adding the radiation heat 

transfer, 

iv. Moving towards a more general solver by adding the gas phase. 

b) Further experiments with the generated solvers. For example, by adding 

simple modules, the codes can support variable properties: 

i. Study of the cases where the properties vary with temperature, 

ii. Study of the cases where properties are anisotropic inside each 

phase (variation with spatial coordinates). 

c) Improving the accuracy and efficiency of the numerical approach: 

i. Usage of the special CE/SE schemes suitable for highly non-

uniform grids, in order to reduce the sensitivity of the solvers to grid 

irregularities. 
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ii. Usage of the Richardson’s extrapolation (in reference to the driven 

cavity problem in Chapter 8), for capturing the solution details using 

coarser grids. 

d) Usage of the space-time CE/SE phase change solvers in the special 

applications, some of which were mentioned in Chapter 1. 
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APPENDIX A 

This appendix contains the derivation of the insulated boundary conditions for temperature, 

on an arbitrarily oriented boundary in a three-dimensional geometry. Figure A.1 depicts the 

geometric parameters involved.  

 

 
 
 

Figure A.1: Geometric parameters involved in the 
transformation of the coordinates  

 
The original coordinate system of the problem is xyz. Triangle V1V2V3 represents an 

arbitrary boundary face. This triangle is shared between a tetrahedral boundary cell called 

cell ‘b’, and its corresponding ghost cell referred to as cell ‘g’. The unit outward vector, 

normal to this boundary face, is represented by  

 

zzyyxx enenenn ˆˆˆˆ ++=                                      (A.1) 
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where xê , yê , and zê  are the basic unit vectors of xyz system.  

As mentioned in previous chapters, it is usually easier to define the boundary conditions in 

a boundary fitted coordinate system, such as XYZ. As can be seen from Fig. A.1, this new 

coordinate system can be generated by rotating the original system until the transformed z-

axis, i.e., the Z-axis, becomes parallel to n̂ . Further, as a matter of convenience, the 

rotation is selected such that the transformed x-axis, i.e., the X-axis, becomes parallel to 

V1V2. The origin of the new system can be selected arbitrarily. Again,  for convenience in 

programming, a translation is also employed and the origin of the transformed system is 

selected at vertex V1 of the boundary triangle.  

Before starting the derivation of the transformation matrix, referred to as T , it is of 

value to outline the procedure of defining second-order derivatives of the temperature. Let 

matrix T  represent the transformation of the coordinates from xyz system to XYZ system, 

as illustrated in Fig. A.2. The inverse transformation will be referred to as 1−T . The 

procedure can then be summarized as fo llows. 

 

1. The value of the temperature in cell ‘g’ is set equal to that of cell ‘b’.  

2. From a physical point of view, the insulated boundary condition of temperature in 

the XYZ system can be defined as follows 

a. The first-order spatial derivatives: 



 

 

214 

 
 

Figure A.2: Transformation of the coordinate system 
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b. The second-order spatial derivatives: 
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c. The second-order mixed derivatives containing time, i.e. txT , tyT , tzT : 

since the transformation is accomplished in space only, the time coordinate 

remains intact. Therefore, the formula derived for the first-order derivatives 

can be used for these mixed derivatives by replacing each first order 

derivative by its corresponding second-order derivative mixed with time 

differentiation. 

3. The inverse transformation can then be used to transform the values of the 

derivatives at cell ‘g’ back to the original system xyz. 

To derive the transformation matrices for the first- and second-order derivatives, the 

metrics of the transformation are needed. For this purpose return to Fig. A.1. Let’s refer to 

the basic unit vectors of XYZ system as Xê , Yê , and Zê . Obviously,       

 

zzyyxxZ enenenne ˆˆˆˆˆ ++==                                  (A.4) 

 

Further, since the X-axis is aligned with V1V2, unit vector Xê  can be calculated as 

 

zzyyxxX ededede ˆˆˆˆ ++≡                                     (A.5) 

 

where  

d
VxVx

d x

)()( 12 −
= , 

d
VyVy

d y

)()( 12 −
= , 

d
VzVz

d z

)()( 13 −
=     (A.6) 

and 
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( ) ( ) ( )2
12

2
12

2
12 )()()()()()( VzVzVyVyVxVxd −+−+−=       (A.7) 

 

Finally, the unit vector Yê  can be found using the cross product of the other two unit 

vectors, i.e. 

zyx

zyx

zyx

XZY

ddd
nnn
eee

eee

ˆˆˆ
ˆˆˆ =×=                                 (A.8) 

 

Therefore, 

zzyyxxY emememe ˆˆˆˆ ++≡                                    (A.9) 

 

where 

yzzyx dndnm −= , zxxzy dndnm −= , and xyyxz dndnm −=  (A.10) 

 

Consider an arbitrary point (X, Y, Z) in the XYZ system. Using Eqs.(A.4), (A.5), and 

(A.9), and also taking into account the translation of the coordinate systems, the position 

vector of this node can be written as follows 
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or in matrix form 
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where 
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zzz
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xxx
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T                                      (A.13) 

is the coordinate transformation matrix that can be used, for example, in the geometric 

calculations related to the ghost cell as mirror image of the boundary cell with respect to 

the boundary. However, further calculations are needed for transformation of the 

derivatives. Before proceeding to that subject, it is worthwhile to note that the inverse 

transformation, 1−T , is also the transpose of the matrix T  and can be easily found to be 
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In order to transform the first-order derivatives of the temperature, the chain rule can be 

used as follows 
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Differentiation of Eq.(A.12) produces again the Jacobian matrix of the transformation 
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which can be used to write Eq.(A.15) in the following matrix form 
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The chain rule can again be used to provide the transformation matrix for the second-

order derivatives. This transformation matrix will be a 9 by 9 matrix, with each row 

transforming one of the 9 spatial second-order derivatives. As an example, one row of this 

matrix is derived below. Consider the derivative TXX, using the first row of the 

transformation matrix TT , we can write   
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The same row of the same transformation matrix can be used again to produce  
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The remaining rows can be derived similarly and the final transformation becomes 
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where ijmM = , and for 9...,,1=i , 9...,,1=j  its components are 

 

xx ddm =11 , yx ddm =12 , zx ddm =13 , xy ddm =14 , yy ddm =15 , zy ddm =16 , 

xz ddm =17 , yz ddm =18 , zz ddm =19 , 

 

xx mdm =21 , yx mdm =22 , zx mdm =23 , xy mdm =24 , yy mdm =25 , zy mdm =26 , 

xz mdm =27 , yz mdm =28 , zz mdm =29 , 

 

xx ndm =31 , yx ndm =32 , zx ndm =33 , xy ndm =34 , yy ndm =35 , zy ndm =36 , 

xz ndm =37 , yz ndm =38 , zz ndm =39 , 
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xx dmm =41 , yx dmm =42 , zx dmm =43 , xy dmm =44 , yy dmm =45 , zy dmm =46 , 

xz dmm =47 , yz dmm =48 , zz dmm =49 , 

 

xx mmm =51 , yx mmm =52 , zx mmm =53 , xy mmm =54 , yy mmm =55 , 

zy mmm =56 , xz mmm =57 , yz mmm =58 , zz mmm =59 , 

 

xx nmm =61 , yx nmm =62 , zx nmm =63 , xy nmm =64 , yy nmm =65 , zy nmm =66 , 

xz nmm =67 , yz nmm =68 , zz nmm =69 , 

 

xx dnm =71 , yx dnm =72 , zx dnm =73 , xy dnm =74 , yy dnm =75 , zy dnm =76 , 

xz dnm =77 , yz dnm =78 , zz dnm =79 , 

 

xx mnm =81 , yx mnm =82 , zx mnm =83 , xy mnm =84 , yy mnm =85 , zy mnm =86 , 

xz mnm =87 , yz mnm =88 , zz mnm =89 , 

 

xx nnm =91 , yx nnm =92 , zx nnm =93 , xy nnm =94 , yy nnm =95 , zy nnm =96 , 

xz nnm =97 , yz nnm =98 , zz nnm =99 . 

 

Conveniently, the inverse of this transformation matrix is also equal to its transpose, 

therefore 
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                                    (A.21) 

 

The procedure outlined in the beginning of this appendix, is then completed by using 

Eqs.(A.17) and (A.20) in step 2, and using Eqs.(A.18) and (A.21) in step 4 of the 

procedure. 
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APPENDIX B: AN UNSTRUCTURED THREE 

DIMENSIONAL REGULAR GRID GENERATOR 

This appendix contains details related to one of the three-dimensional grid generators used 

in this research. The grid generator of interest is unstructured, but is particularly 

programmed to generated regular grids in which the minimum angle is kept as large as 

possible. As is well known, the minimum angle in the grid is inversely related to mesh-

originated errors. To keep the grid regular, cubic building block are used. Each cube is 

divided into tetrahedral cells. The block of tetrahedral cells are then assembled together to 

produce the region to be meshed.  

There exists a number of ways to divide a cube into tetrahedral cells. Each method 

produces produce its own specific number of tetrahedral cells inside the cube. This number 

can be 5, 6, 12, etc. An study on the resultant tetrahedral cells from each dividing method 

shows that small angles results from any division method that contains divisions requiring 

drawing of the cube’s larger diagonals, i.e., diagonals FB, DH, AE, and GC in the 

following figure. It these diagonals are to be avoided, the cube can be divided into 5 

tetrahedral cells. All triangular faces will have angles of at least 45 degrees. One specific 
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tetrahedron will consis t of equilateral triangles for its faces. The overall mesh will have 

very good quality.  

The drawback of this method is the fact that it can not be fitted easily to the curved 

boundaries. Therefore, this grid generator is used in this research, for geometries without 

curvature. Other grid generation methods, such as the advancing front method are used for 

curved geometries.  

      

The following contains an illustrated explanation of the division method applied on a cube.  

 

Consider the following cube (ABCDEFGH)  

 

 

 
 
 

Draw diagonals GE, GB, and BE 
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The first tetrahedron (GHEB) is then built. For demonstration purpose, this tetrahedron is 

cut from the original cube and shown separately below.  

 
 

           
 
 

On the remaining polyhedron, draw diagonals DB and DG 

 

 

 
 
 

The second tetrahedron (GABD) is then built. For demonstration purpose, this tetrahedron 

is cut from the original cube and shown separately below.  

 

 

 
 
 

On the remaining polyhedron, draw diagonal DE 
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The third tetrahedron (EBCD) is then built. For demonstration purpose, this tetrahedron is 

cut from the original cube and shown separately below.  

 

 

      
 
 

The remaining polyhedron is readily divided into the fourth and the fifth tetrahedral cells, 

i.e., FEGD and GDBE. For demonstration purpose, these cells are shown separately below 
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Examination of the sub-elements of the cubic block shows that the next block can not be 

generated only by translation of the first block. This difficulty originated from the fact that 

the larger diagonals needed to be avoided. The following figure demonstrates this problem.  

 

 

              
 
 

As can be seen, if the second block (A/B/C/D/E/F/G/H/) is assembled on the first block, 

triangular faces will not match since edges EB and G/D/ cross each other. A rotation would 

be needed; repeated rotations would complicate the computer program. One way to 

overcome this difficulty can be explained as follows. Imagine that the mirror image of the 

block ABCDEFGH (containing 5 cells) with respect to face BCEH is attached to the first 

block at face BCEH. The new block containing 10 tetrahedral cells can then easily generate 

additional blocks only by translation in the horizontal direction. A similar technique can be 

used in the other two directions of the coordinate systems. Finally, the building blocks that 

can be easily assembled on each other, without any rotation, cons ist of 8 cubes attached 

together. The final building block contains 40 tetrahedral cells.     

 

A computer program is then written to generate a prescribed domain, filled with the above 

40-cell blocks.    
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APPENDIX C 

In this appendix, the derivatives of the flux functions, related to the CE/SE Navier-Stokes 

formulation, are derived. The first step is to express the flux functions F
r

 and G
r

 in terms 

of the components of vector U
r

. For clarity, we repeat the definitions of vectors F
r

, G
r

, and 

U
r

 from Chapter 8: 
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In the above definitions, the pressure is substituted for, using the stiffened gas equation of 

state, i.e. Eq. (8.5). Further, Eq. (8.3) is used for substituting the shear stresses. The flux 

functions can then be expressed in terms of the components of U
r

 as follows 
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Now that the flux functions are expressed in terms of the independent variables, the 

Jacobian components, needed in Eq. (8.10), can be derived by as follows. Differentiation of 

Eq. (C.4) leads to 
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Differentiation of Eq. (C.5) yields the following 
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Differentiation of Eq. (C.6) provides 
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Differentiation of Eq. (C.7) results in the following 
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Similarly, differentiation of Eq. (C.8) leads to 

 

0
4

1

2

1

1

1 =
∂
∂

=
∂
∂

=
∂
∂

U
G

U
G

U
G

                                  (C.26) 

 

and 

1
3

1 =
∂
∂

U
G

                                               (C.27) 



 

 

235 

 

Since G2 = F3, derivatives of G2 with respect to components of U
r

, can be readily 

computed from Eqs. (C.18)-(C.21). Further proceeding, Eq. (C.10) can be differentiated to 

provide 

 

( )
( )

( )
( )

( )
( )

( )
( ) 








−++−−




















+







−
+








−=

∂
∂

3
1

12
2

1

2
3

1

13

2
1

3

2

1

3

2

1

2

2

1

3

1

3

242
3
2

2
)1~(

U

UU

U

U

U

UU

U

U

U
U

U
U

U
U

U
G

xxyyµ

γ

     (C.28) 

( )
( )2

1

1

1

2

2

3

3
2

)~1(
U

U
U
U

U
G xµγ −−=

∂
∂

                            (C.29) 

 

( )
( )2

1

1

1

3

3

3

3
4

)~3(
U

U

U
U

U
G y

µγ +−=
∂
∂

                            (C.30) 

 

1~
4

3 −=
∂
∂

γ
U
G

                                           (C.31) 

 

Finally, differentiation of Eq. (C.11) results in 

 



 

 

236 

( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( )

( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( )

( ) 







−+−+









+−+−−









+−−+









−++−−













−

































+








−−+

−





















+







−
=

∂
∂

2
1

13

1

3
2

1

12

1

2
2

1

2

3
1

13
2

1

3
3

1

12

2
1

2

1

2

2
1

12

1

2
2

1

13

1

3
2

1

3

3
1

12
2

1

2
3

1

13

2
1

3

1

3

2

1

3

2

1

21
442

1

3

2

1

3

2

1

2

1

3

1

4

22

22
3
2

242
3
2

~
2

)1~(

2
1~

U

UU
U

U

U

UU

U

U

U
U

U

UU

U

U

U

UU

U

U

U
U

U

UU
U

U

U

UU

U

U

U
U

U

UU

U

U

U

UU

U

U

U
U

B
U
U

U
UU

UU
U
U

U
U

U
U

U
U

U
G

xxyy

xxyy

xxyy

xxyy

µ

µ

µ

µ

γγ

γ

(C.32) 

( )
( )

( )
( ) ( )

( )
( ) ( )

( )
( )

( )3
1

12

2
1

13

1

3
2

1

12

1

2

1

3
1

13
2

1

32

2

4

3
2

)~1(

U

UU

U

UU
U
U

U

UU

U

U

U

U

UU

U

UU
U
G

y

xxyy

x

µ

µ

µγ

+









−+−−

−−=
∂
∂

           (C.33) 

 

( ) ( )
( )

( ) ( )
( )

( )
( )

( )
( )3

1

12
3

1

13

2
1

12

1

2
2

1

13

1

3

1

2

1

3

2

1

21
44

1

2

1

3

3

4

3
4

22
3
2

~
2

)1~(
1

)~1(

U

UU

U

UU

U

UU
U

U

U

UU

U

U

U

B
U
U

U
UU

UU
U

U
U

U
G

xy

xxyy

µµ

µ

γγ

γ

++









+−−−













−

































+








−−+

+







−=

∂
∂

   (C.34) 

 



 

 

237 

1

3

4

4 ~
U
U

U
G

γ=
∂
∂

                                           (C.35) 

 

The above Jacobian components can then be used in Eqs. (8.9) and (8.10) in order to 

compute the derivatives of the flux functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


